Một hộp có 5 chiếc thẻ cùng loại, mỗi thẻ được ghi một trong các số 1, 2, 3, 4, 5; hai thẻ khác nhau thì ghi số khác nhau. Rút ngẫu nhiên một thẻ rồi bỏ lại thẻ vào hộp.
Sau 25 lần rút thẻ liên tiếp, hãy ghi kết quả thống kê theo mẫu sau:
Lần 1 |
Số 3 |
Lần 6 |
Số 5 |
Lần 11 |
Số 3 |
Lần 16 |
Số 2 |
Lần 21 |
Số 1 |
Lần 2 |
Số 1 |
Lần 7 |
Số 2 |
Lần 12 |
Số 2 |
Lần 17 |
Số 1 |
Lần 22 |
Số 5 |
Lần 3 |
Số 2 |
Lần 8 |
Số 3 |
Lần 13 |
Số 2 |
Lần 18 |
Số 2 |
Lần 23 |
Số 3 |
Lần 4 |
Số 3 |
Lần 9 |
Số 4 |
Lần 14 |
Số 1 |
Lần 19 |
Số 3 |
Lần 24 |
Số 4 |
Lần 5 |
Số 4 |
Lần 10 |
Số 5 |
Lần 15 |
Số 5 |
Lần 20 |
Số 5 |
Lần 25 |
Số 5 |
Tính xác suất thực nghiệm
Xuất hiện số 2
Trả lời:
Tổng số lần rút là 25 lần.
Số lần xuất hiện số 2 là 6 lần.
Xác suất thực nghiệm xuất hiện số 2 là \[\frac{6}{{25}} = 0,24\]
Đáp án cần chọn là: B
Trong một hộp có 1 quả bóng xanh và 9 bóng vàng có kích thước giống nhau. An lấy ra đồng thời 2 bóng từ hộp. Có các sự kiện sau:
1- An lấy được 2 bóng màu xanh
2- An lấy được ít nhất một bóng màu vàng
3- An lấy được 2 bóng màu vàng.
Sự kiện chắc chắn, không thể và có thể xảy ra lần lượt là
Một hộp có 5 chiếc thẻ cùng loại, mỗi thẻ được ghi một trong các số 1, 2, 3, 4, 5; hai thẻ khác nhau thì ghi số khác nhau. Rút ngẫu nhiên một thẻ.
Viết tập hợp các kết quả có thể xảy ra đối với số xuất hiện trên thẻ được rút ra.
Tung đồng xu 15 lần liên tiếp và kết quả thu được ghi lại trong bảng sau:
Lần tung |
Kết quả |
Lần tung |
Kết quả |
Lần tung |
Kết quả |
1 |
S |
6 |
N |
11 |
N |
2 |
S |
7 |
S |
12 |
S |
3 |
N |
8 |
S |
13 |
N |
4 |
S |
9 |
N |
14 |
N |
5 |
N |
10 |
N |
15 |
N |
N: Ngửa
S: Sấp
Số lần xuất hiện mặt ngửa (N) là
Tung đồng xu 15 lần liên tiếp và kết quả thu được ghi lại trong bảng sau:
Lần tung |
Kết quả |
Lần tung |
Kết quả |
Lần tung |
Kết quả |
1 |
S |
6 |
N |
11 |
N |
2 |
S |
7 |
S |
12 |
S |
3 |
N |
8 |
S |
13 |
N |
4 |
S |
9 |
N |
14 |
N |
5 |
N |
10 |
N |
15 |
N |
N: Ngửa
S: Sấp
Xác suất thực nghiệm xuất hiện mặt ngửa là
Một hộp có 5 chiếc thẻ cùng loại, mỗi thẻ được ghi một trong các số 1, 2, 3, 4, 5; hai thẻ khác nhau thì ghi số khác nhau. Rút ngẫu nhiên một thẻ.
Hai điều cần chú ý trong mô hình xác suất của trò chơi trên là
1. Rút ngẫu nhiên thẻ;
2. Tập hợp các kết quả có thể xảy ra đối với xuất hiện trên thẻ là
{1, 2, 3, 4, 5}. Ở đây, 1, 2, 3, 4, 5 là các số xuất hiện trên thẻ.
Một hộp có 5 chiếc thẻ cùng loại, mỗi thẻ được ghi một trong các số 1, 2, 3, 4, 5; hai thẻ khác nhau thì ghi số khác nhau. Rút ngẫu nhiên một thẻ.
Số xuất hiện trên thẻ được rút có phải là phần tử của tập hợp {1; 2; 3; 4; 5} hay không?
Không
Có
Một hộp có 5 chiếc thẻ cùng loại, mỗi thẻ được ghi một trong các số 1, 2, 3, 4, 5; hai thẻ khác nhau thì ghi số khác nhau. Rút ngẫu nhiên một thẻ rồi bỏ lại thẻ vào hộp.
Sau 25 lần rút thẻ liên tiếp, hãy ghi kết quả thống kê theo mẫu sau:
Lần 1 |
Số 3 |
Lần 6 |
Số 5 |
Lần 11 |
Số 3 |
Lần 16 |
Số 2 |
Lần 21 |
Số 1 |
Lần 2 |
Số 1 |
Lần 7 |
Số 2 |
Lần 12 |
Số 2 |
Lần 17 |
Số 1 |
Lần 22 |
Số 5 |
Lần 3 |
Số 2 |
Lần 8 |
Số 3 |
Lần 13 |
Số 2 |
Lần 18 |
Số 2 |
Lần 23 |
Số 3 |
Lần 4 |
Số 3 |
Lần 9 |
Số 4 |
Lần 14 |
Số 1 |
Lần 19 |
Số 3 |
Lần 24 |
Số 4 |
Lần 5 |
Số 4 |
Lần 10 |
Số 5 |
Lần 15 |
Số 5 |
Lần 20 |
Số 5 |
Lần 25 |
Số 5 |
Tính xác suất thực nghiệm
Xuất hiện số 1
Tung đồng xu 15 lần liên tiếp và kết quả thu được ghi lại trong bảng sau:
Lần tung |
Kết quả |
Lần tung |
Kết quả |
Lần tung |
Kết quả |
1 |
S |
6 |
N |
11 |
N |
2 |
S |
7 |
S |
12 |
S |
3 |
N |
8 |
S |
13 |
N |
4 |
S |
9 |
N |
14 |
N |
5 |
N |
10 |
N |
15 |
N |
N: Ngửa
S: Sấp
Xác suất thực nghiệm xuất hiện mặt S là
Trong hộp có 10 lá thư có bì thư giống nhau, bên trong mỗi bì thư có 1 lá thư và được đánh số từ 1 đến 10. Mỗi bạn lấy ngẫu nhiên một bì thư, xem số ghi trên lá thư rồi trả lại vào bì và cho vào hộp. Sự kiện có thể xảy ra là
Một hộp có 5 chiếc thẻ cùng loại, mỗi thẻ được ghi một trong các số 1, 2, 3, 4, 5; hai thẻ khác nhau thì ghi số khác nhau. Rút ngẫu nhiên một thẻ.
Số xuất hiện trên thẻ được rút có phải là phần tử của tập hợp {1; 2; 3; 4; 5} hay không?
Không
Có
Nếu tung một đồng xu 30 lần liên tiếp có 12 lần xuất hiện mặt N thì xác suất thực nghiệm xuất hiện mặt S bằng bao nhiêu?
Một hộp có 5 chiếc thẻ cùng loại, mỗi thẻ được ghi một trong các số 1, 2, 3, 4, 5; hai thẻ khác nhau thì ghi số khác nhau. Rút ngẫu nhiên một thẻ rồi bỏ lại thẻ vào hộp.
Sau 25 lần rút thẻ liên tiếp, hãy ghi kết quả thống kê theo mẫu sau:
Lần 1 |
Số 3 |
Lần 6 |
Số 5 |
Lần 11 |
Số 3 |
Lần 16 |
Số 2 |
Lần 21 |
Số 1 |
Lần 2 |
Số 1 |
Lần 7 |
Số 2 |
Lần 12 |
Số 2 |
Lần 17 |
Số 1 |
Lần 22 |
Số 5 |
Lần 3 |
Số 2 |
Lần 8 |
Số 3 |
Lần 13 |
Số 2 |
Lần 18 |
Số 2 |
Lần 23 |
Số 3 |
Lần 4 |
Số 3 |
Lần 9 |
Số 4 |
Lần 14 |
Số 1 |
Lần 19 |
Số 3 |
Lần 24 |
Số 4 |
Lần 5 |
Số 4 |
Lần 10 |
Số 5 |
Lần 15 |
Số 5 |
Lần 20 |
Số 5 |
Lần 25 |
Số 5 |
Tính xác suất thực nghiệm
Xuất hiện số chẵn
Nếu tung một đồng xu 22 lần liên tiếp thì, có 14 lần xuất hiện mặt N thì xác suất thực nghiệm xuất hiện mặt N bằng bao nhiêu?