Hệ số cao nhất của đa thức 11x3 – 5x5 + 9x3 + 19x2 – 8x5 là
Hướng dẫn giải
Đáp án đúng là: D
Ta có: 11x3 – 5x5 + 9x3 + 19x2 – 8x5
= (– 5x5 – 8x5) + (9x3 + 11x3) + 19x2
= – 13x5 + 20x3 + 19x2
Hệ số cao nhất của đa thức là hệ số của biến có số mũ cao nhất.
Trong đa thức trên, số mũ cao nhất của x là 5.
Mà hệ số của x5 là –13.
Do đó hệ số cao nhất của đa thức là –13.
Vậy ta chọn phương án D.
Thu gọn và sắp xếp đa thức P(x) = x3 + 3x5 – 2x – 5x3 + x5 theo lũy thừa giảm dần của biến ta được:
Cho đa thức A(t) = 2t2 – 3t + 1. Phần tử nào trong tập hợp {‒1; 0; 1; 2} là nghiệm của A(t)?
Cho hai đa thức:
A(x) = ‒x2 + 11 và B(x) = x3 – 5x + 16.
Chọn khẳng định đúng:
Cho đa thức A(x) = –x2 + 4x3 – 11 + x2. Giá trị của A khi x = 2 là:
Cho đa thức A(x) = 2x2 – 7ax + a – 1. Để A(‒3) = 6 thì giá trị của a là: