Tổng các hệ số của biến x trong đa thức A(x) = x(x2 – 5) + x2(x + 8) là:
Hướng dẫn giải
Đáp án đúng là: D
Ta có:
A(x) = x(x2 – 5) + x2(x + 8)
= x . x2 – x . 5 + x2 . x + x2 . 8
= x3 – 5x + x3 + 8x2
= (x3 + x3) – 5x + 8x2
= 2x3 + 8x2 – 5x
Do đó x3 có hệ số là 2; x2 có hệ số là 8; x có hệ số là –5.
Nên tổng các hệ số của biến x trong đa thức là: 2 + 8 – 5 = 5
Vậy ta chọn phương án D.
Cho đa thức f(x) = (4x7 – x + 11x5 + 2x3 + x5 – 9x4) : (2x). Sắp xếp đa thức f(x) theo lũy thừa tăng dần ta được:
Cho đa thức A(x) = (x3 – 8x2 + x – 8) : (x – 8).
Có bao nhiêu giá trị của x để A(x) = 0?
Cho đa thức f(x) = (x4 – x3 + 10x2 – 9x + 9) : (x2 + 9). Giá trị của f(2) là:
Tìm đa thức bị chia biết đa thức chia là (x – 1), thương là (4x2 + 3x + 8) và dư 16.