Hệ số cao nhất của đa thức 11x3 – 5x5 + 9x3 + 19x2 – 8x5 là
Hướng dẫn giải
Đáp án đúng là: D
Ta có: 11x3 – 5x5 + 9x3 + 19x2 – 8x5
= (– 5x5 – 8x5) + (9x3 + 11x3) + 19x2
= – 13x5 + 20x3 + 19x2
Hệ số cao nhất của đa thức là hệ số của biến có số mũ cao nhất.
Trong đa thức trên, số mũ cao nhất của x là 5.
Mà hệ số của x5 là –13.
Do đó hệ số cao nhất của đa thức là –13.
Vậy ta chọn phương án D.
Tìm đa thức bị chia biết đa thức chia là (x – 1), thương là (4x2 + 3x + 8) và dư 16.
Cho đa thức A(t) = 2t2 – 3t + 1. Phần tử nào trong tập hợp {‒1; 0; 1; 2} là nghiệm của A(t)?
Cho đa thức A(x) = 2x2 – 7ax + a – 1. Để A(‒3) = 6 thì giá trị của a là:
Cho hai đa thức
A(x) = x3 – x + 2 ;
B(x) = 3x3 – 12 ;
Cho F(x) = A(x) + B(x). Chọn khẳng định đúng:
Cho hai đa thức:
f(x) = – 4x4 – 5x2 + x7 – 11x và g(x) = x7 – 3x5 + 6x4 + 16.
Bậc của đa thức f(x) – g(x) là:
Cho đa thức f(x) = (x4 – x3 + 10x2 – 9x + 9) : (x2 + 9). Giá trị của f(2) là:
Cho đa thức f(x) = (4x7 – x + 11x5 + 2x3 + x5 – 9x4) : (2x). Sắp xếp đa thức f(x) theo lũy thừa tăng dần ta được: