Cho ΔABC cân tại A. Gọi G là trọng tâm của tam giác, I là giao điểm của các đường phân giác trong tam giác. Khẳng định nào đúng?
Hướng dẫn giải
Đáp án đúng là: B
Vì I là giao điểm của các đường phân giác trong tam giác ABC nên I cách đều ba cạnh của ΔABC, do đó phương án A là sai.
Vì G là trọng tâm của tam giác ABC, không phải giao điểm ba đường trung trực nên G không cách đều ba đỉnh của ΔABC, do đó phương án C là sai.
Xét ΔABC cân tại A có AI là đường phân giác của góc BAC nên AI cũng là đường trung tuyến và AI đi qua trọng tâm G của tam giác ΔABC.
Suy ra A, I, G thẳng hàng nên phương án B là đúng.
Vậy ta chọn phương án B.
Cho tam giác ABC có AH ⊥ BC và \(\widehat {BAH} = 2\widehat {BCA}\). Tia phân giác của góc B cắt AC tại E, tia phân giác của góc BAH cắt BE ở I. Số đo góc BEC là
Cho tam giác ABC có các tia phân giác cắt nhau tại I. Qua I kẻ đường thẳng song song với BC cắt AB lại E, cắt AC tại F. Biết BE = 1 cm, CF = 2 cm. Độ dài đoạn EF là:
Cho tam giác DEG có \(\widehat G = \frac{1}{3}\widehat D = \frac{1}{5}\widehat E\). Vẽ các đường phân giác DM, EN. Số đo góc GMD là:
Cho tam giác AOM có \(\widehat A = 52^\circ \). Ba đường phân giác cắt nhau tại I. Số đo góc MIO là:
Cho tam giác ABC có các đường phân giác cắt nhau tại I. Biết \(\widehat {BIC} = 126^\circ .\) Khi đó \(\widehat {BAI}\) bằng:
Cho tam giác DEG có \(\widehat G = \widehat D + \widehat E\). Hai tia phân giác DA, EB cắt nhau tại H. Số đo góc AHB là: