Hai nhà máy được xây dựng tại hai địa điểm A và B cùng nằm về một phía của khúc sông thẳng. Lấy điểm mốc D ở phía bên kia bờ sông là điểm đối xứng của nhà máy A qua khúc sông thẳng.
Tìm trên bờ sông một địa điểm C để xây dựng trạm bơm sao cho tổng chiều dài đường ống dẫn nước từ C đến A và đến B nhỏ nhất.
Hướng dẫn giải
Đáp án đúng là: A
Vì D là điểm đối xứng của A qua bờ sông
Nên bờ sông chính là đường trung trực của AD.
Do đó CA = CD (tính chất đường trung trực)
Suy ra CA + CB = CD + CB.
Gọi M là giao điểm của BD và bờ sông.
+) Nếu C không trùng với M, ta xét ∆BCD, có:
CB + CD > BD hay CA + CB > BD (1).
+) Nếu C trùng với M thì:
CA + CB = CD + CB = MD + MB = BD (2).
Từ (1), (2), ta suy ra CA + CB ≥ BD.
Do đó khi C trùng với M hay C là giao điểm của BD với bờ sông thì giá trị của tổng CA + CB là nhỏ nhất.
Vậy ta chọn phương án A.
Cho tam giác ABC vuông tại A. Các tia phân giác của các góc B và C cắt nhau tại I. Gọi H, J, K lần lượt là chân đường vuông góc kẻ từ I đến AB, AC, BC. Biết KI = 5 cm, BK = 10 cm, KC = 15 cm. Diện tích tam giác ABC bằng:
Cho ∆ABC có AD, BE, CF là ba đường trung tuyến và trọng tâm G.
Cho các phát biểu sau:
(I) \[AD + BE + CF > \frac{3}{4}\left( {AB + BC + AC} \right)\];
(II) AD + BE + CF < AB + BC + AC.
Chọn khẳng định đúng:
Một con đường quốc lộ có vị trí với hai điểm dân cư A và B như hình vẽ dưới đây.
Hãy tìm trên đường quốc lộ đó một địa điểm C để xây dựng trạm y tế sao cho trạm y tế cách đều hai điểm dân cư A và B.
Cho tam giác MNP có ba đường phân giác MA, NB, PC cắt nhau tại I. Vẽ IH vuông góc NP tại H. Khẳng định nào dưới đây là đúng:
Ba vị trí của khu vực A, B, C trong một trường học được mô tả như hình vẽ dưới đây.
Nếu đặt ở khu vực A một thiết bị phát wifi thì cần có bán kính hoạt động là bao nhiêu để cả hai khu vực B và C đều nhận được tín hiệu?
Cho tam giác ABC có \(\widehat A = \alpha \) là góc tù. Các đường trung trực của các cạnh AB và AC cắt nhau tại I. Tính số đo của góc BIC theo α ta được: