Cho ∆GHK và tam giác tạo bởi ba đỉnh P, Q, R là hai tam giác bằng nhau. Biết rằng mỗi tam giác không có hai cạnh nào bằng nhau và không có hai góc nào bằng nhau. Biết và . Cách kí hiệu nào sau đây đúng?
A. ∆GHK = ∆QPR;
B. ∆HKG = ∆QPR;
C. ∆GHK = ∆PQR;
Hướng dẫn giải
Đáp án đúng là: A
Ta có (giả thiết)
Suy ra H và P là hai đỉnh tương ứng (1)
Lại có (giả thiết)
Suy ra K và R là hai đỉnh tương ứng (2)
Từ (1), (2), ta suy ra G và Q là hai đỉnh tương ứng còn lại.
Vì vậy ta kí hiệu là: ∆GHK = ∆QPR.
Do đó ta chọn phương án A.
Cho ∆ABC và tam giác tạo bởi ba đỉnh H, I, K bằng nhau. Biết rằng mỗi tam giác không có hai cạnh nào bằng nhau và không có hai góc nào bằng nhau. Biết AC = IK, BC = HI. Cách kí hiệu nào sau đây đúng?
Cho ∆DEF và tam giác tạo bởi ba đỉnh M, N, P là hai tam giác bằng nhau. Biết rằng mỗi tam giác không có hai cạnh nào bằng nhau và không có hai góc nào bằng nhau. Biết và FD = PN. Cách kí hiệu nào sau đây đúng?