Cho bốn điểm A, B, C, D thuộc đường tròn (O) sao cho AB = CD. Khẳng định nào sau đây sai?
A. ∆AOB = ∆COD;
B. ;
C. ;
Hướng dẫn giải
Đáp án đúng là: B
⦁ Xét ∆AOB và ∆COD, có:
OA = OC (= R)
OB = OD (= R)
AB = CD (giả thiết)
Do đó ∆AOB = ∆COD (c.c.c)
Vì vậy phương án A đúng.
⦁ Ta có ∆AOB = ∆COD (chứng minh trên)
Suy ra và (các cặp góc tương ứng)
Vì vậy phương án B sai, phương án C, D đúng.
Vậy ta chọn phương án B.
Cho đoạn thẳng AB, điểm O nằm giữa A và B. Kẻ tia Ox vuông góc với AB. Trên tia Ox lấy các điểm C và D sao cho OC = OA, OD = OB. Gọi M, N lần lượt là trung điểm của AD và BC. Góc MON là:
Cho góc nhọn . Trên tia Ax lấy hai điểm B và E, trên tia Ay lấy hai điểm D và C sao cho AB = AD, AE = AC. Gọi O là giao điểm của DE và BC. Cho OC = 1,5 cm, OD = 1cm. Độ dài đoạn thẳng DE là:
Cho ∆MNP. Các đường phân giác trong các cắt nhau tại I. Kết luận nào sau đây đúng?
Cho tam giác ABC, có AB = 2,BC = 7, AC = . Lấy M là trung điểm của AB, N là trung điểm của AC.
Độ dài đoạn thẳng MN là: