Cho hình chóp S.ABC có \(SA \bot \left( {ABC} \right)\), tam giác ABC vuông tại B. Biết \(SA = a,\,\,AB = b,\,\,BC = c\). Gọi B’, C’ tương ứng là hình chiếu vuông góc của A trên SB, SC. Gọi V, V’ tương ứng là thể tích của các khối chóp S.ABC, S.AB’C’. Khi đó ta có
B. \(\frac{{V'}}{V} = \frac{{{a^2}}}{{{a^2} + {b^2} + {c^2}}}\)
D. \(\frac{{V'}}{V} = \frac{{{a^2}}}{{{a^2} + {b^2}}} + \frac{{{a^2}}}{{{a^2} + {b^2} + {c^2}}}\)
Đáp án C
Phương pháp:
Sử dụng công thức tỉ số thể tích cho khối chóp tam giác (Công thức Simson):
Cho khối chóp S.ABC, các điểm \({A_1},\,{B_1},\,{C_1}\) lần lượt thuộc SA, SB, SC. Khi đó, \(\frac{{{V_{S.{A_1}{B_1}{C_1}}}}}{{{V_{S.ABC}}}} = \frac{{S{A_1}}}{{SA}}.\frac{{S{B_1}}}{{SB}}.\frac{{S{C_1}}}{{SC}}\)
Đáp án C
Phương pháp:
Sử dụng công thức tỉ số thể tích cho khối chóp tam giác (Công thức Simson):
Cho khối chóp S.ABC, các điểm \({A_1},\,{B_1},\,{C_1}\) lần lượt thuộc SA, SB, SC. Khi đó, \(\frac{{{V_{S.{A_1}{B_1}{C_1}}}}}{{{V_{S.ABC}}}} = \frac{{S{A_1}}}{{SA}}.\frac{{S{B_1}}}{{SB}}.\frac{{S{C_1}}}{{SC}}\)
Cách giải:
Tam giác SAB vuông tại A, AB’ vuông góc SB
\( \Rightarrow SB'.SB = S{A^2} \Rightarrow \frac{{SB'}}{{SB}} = \frac{{S{A^2}}}{{S{B^2}}} = \frac{{{a^2}}}{{{a^2} + {b^2}}}\)
Tam giác ABC vuông tại B
\( \Rightarrow AC = \sqrt {A{B^2} + B{C^2}} = \sqrt {{a^2} + {b^2}} \)
Tam giác SAC vuông tại A, AC’ vuông góc SC
\( \Rightarrow SC'.SC = S{A^2} \Rightarrow \frac{{SC'}}{{SC}} = \frac{{S{A^2}}}{{S{C^2}}} = \frac{{{a^2}}}{{{a^2} + {b^2} + {c^2}}}\)
\(\frac{{{V_{S.A'B'C'}}}}{{{S_{S.ABC}}}} = \frac{{SB'}}{{SB}}.\frac{{SC'}}{{SC}} = \frac{{{a^2}}}{{{a^2} + {b^2}}}.\frac{{{a^2}}}{{{a^2} + {b^2} + {c^2}}} = \frac{{{a^4}}}{{\left( {{a^2} + {b^2}} \right)\left( {{a^2} + {b^2} + {c^2}} \right)}}\)
Cách giải:
Tam giác SAB vuông tại A, AB’ vuông góc SB
\( \Rightarrow SB'.SB = S{A^2} \Rightarrow \frac{{SB'}}{{SB}} = \frac{{S{A^2}}}{{S{B^2}}} = \frac{{{a^2}}}{{{a^2} + {b^2}}}\)
Tam giác ABC vuông tại B
\( \Rightarrow AC = \sqrt {A{B^2} + B{C^2}} = \sqrt {{a^2} + {b^2}} \)
Tam giác SAC vuông tại A, AC’ vuông góc SC
\( \Rightarrow SC'.SC = S{A^2} \Rightarrow \frac{{SC'}}{{SC}} = \frac{{S{A^2}}}{{S{C^2}}} = \frac{{{a^2}}}{{{a^2} + {b^2} + {c^2}}}\)
\(\frac{{{V_{S.A'B'C'}}}}{{{S_{S.ABC}}}} = \frac{{SB'}}{{SB}}.\frac{{SC'}}{{SC}} = \frac{{{a^2}}}{{{a^2} + {b^2}}}.\frac{{{a^2}}}{{{a^2} + {b^2} + {c^2}}} = \frac{{{a^4}}}{{\left( {{a^2} + {b^2}} \right)\left( {{a^2} + {b^2} + {c^2}} \right)}}\)
Cho x, y là hai số thực dương và m, n là hai số thực tùy ý. Đẳng thức nào sau đây là sai?
Các hình trụ tròn xoay có diện tích toàn phần là S không đổi, gọi chiều cao hình trụ là h và bán kính đáy hình trụ là r. Thể tích của khối trụ đó đạt giá trị lớn nhất khi
Giá trị của m để hàm số \(y = {x^3} - 3m{x^2} + 3\left( {{m^2} - 1} \right)x + m\) đạt cực đại tại \(x = 1\) là:
Phương trình tiếp tuyến của đồ thị hàm số \(y = {x^4} - 6{x^2} + 8x - 2\) tại điểm \({x_0} = 1\) là
Một người lần đầu gửi vào ngân hàng 100 triệu đồng với kì hạn 3 tháng, lãi suất 2% một quý theo hình thức lãi kép (một quý bằng 3 tháng). Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước đó. Tổng số tiền người đó nhận được tính từ lần gửi ban đầu đến thời điểm sau khi gửi thêm 1 năm, gần nhất với kết quả nào sau đây?
Cho x là số thực dương. Dạng lũy thừa với số mũ hữu tỉ của biểu thức \(\sqrt {x.\sqrt[3]{x}} \) là:
Tập hợp tất cả các số thực m để hàm số \(y = {x^3} + 5{x^2} - 4mx - 3\) đồng biến trên R là
Cho hàm số \(y = f\left( x \right)\) có bảng biến thiên là
Khẳng định nào sau đây là khẳng định đúng?
Cho hình nón có bán kính đáy bằng a, đường sinh có độ dài bằng \(a\sqrt 3 \). Thể tích của khối nón đó là
Đồ thị của hàm số \(y = \frac{{2x - 1}}{{\left| x \right| + 1}}\) có bao nhiêu đường tiệm cận?
Một người cần đi từ khách sạn A bên bờ biển đến hòn đảo C. Biết rằng khoảng cách từ đảo C đến bờ biển là BC = 10km, khoảng cách từ khách sạn A đến điểm ngắn nhất tính từ đảo C vào bờ là AB = 40km. Người đó có thể đi đường thủy hoặc đi đường bộ rồi đi đường thủy từ khách sạn ra đảo (như hình vẽ dưới đây). Biết kinh phí đi đường thủy là 5 USD/km, kinh phí đi đường bộ là 3 USD/km. Hỏi người đó phải đi đường bộ một đoạn AD bao nhiêu để kinh phí đi từ A đến C nhỏ nhất? (AB vuông góc BC-hình dưới đây)