Ta có a + b + c + d = 0
⇔ a + b = – c – d
⇔ (a + b)3 = (– c – d)3
⇔ a3 + b3 + 3ab(a + b) = – c3 – d3 – 3cd(c + d)
⇔ a3 + b3 + c3 + d3 = – 3cd(c + d) – 3ab(a + b)
⇔ a3 + b3 + c3 + d3 = – 3cd(c + d) + 3ab(c + d)
⇔ a3 + b3 + c3 + d3 = 3(c + d)(ab – cd)
Vậy a3 + b3 + c3 + d3 = 3(c + d)(ab – cd).
Một người bơi dọc trong bể bơi dài 50 m. Bơi từ đầu bể đến cuối bể hết 20 giây, bơi tiếp từ cuối bể quay về đầu bể hết 22 giây. Xác định tốc độ trung bình và vận tốc trung bình trong 3 trường hợp sau:
a) Bơi từ đầu bể đến cuối bể.
Cho số tự nhiên có 3 chữ số, biết rằng nếu thêm một chữ số 0 vào giữa chữ số hàng trăm và hàng chục của số đó ta được một số gấp 6 lần số đã cho.
Tìm số tự nhiên có bốn chữ số, biết rằng khi viết thêm chữ số 7 vào bên phải số đó thì được số có năm chữ số lớn hơn số phải tìm 11 212 đơn vị.
Cho hình thang ABCD (AB // CD) và AB = BC.
a) Chứng minh CA là phân giác của góc BCD.
Một phân xưởng có 24 máy dệt, mỗi ngày dệt được 264 áo. Nếu phân xưởng đó có thêm 12 máy nữa thì mỗi ngày dệt được tất cả bao nhiêu áo? (Năng suất mỗi máy không đổi).
Hai bác thợ cưa một cây gỗ dài 7 m thành những đoạn dài 1 m. Cứ 12 phút thì cưa xong một đoạn. Hỏi cưa cả cây gỗ đó hết bao lâu?
Hai thùng chứa 100 lít dầu. Sau khi đổ 10 lít từ thùng 1 sang thùng thứ 2 thì số dầu thùng thứ 2 bằng số ở thùng 1. Hỏi ban đầu mỗi thùng có bao nhiêu lít dầu?
Cho tam giác ABC (AB < AC) đường cao AH. Gọi M, N, P lần lượt là trung điểm của cạnh BC, CA, AB.
a) Chứng minh NP là đường trung trực của AH.
Cho tam giác ABC nhọn. Gọi M và N lần lượt là trung điểm của AB, BC
a) Tính độ dài của MN biết AC = 16 cm.
b) Gọi I là trung điểm của AC. Chứng minh tứ giác BMIN là hình bình hành.
May 3 bộ quần áo hết 7 m vải. Hỏi may 9 bộ quần áo như thế hết bao nhiêu mét vải?
Cho tam giác ABC vuông tại A, đường cao AH, M là trung điểm của BC, có BH = 4 cm, CH = 9 cm. Tính diện tích tam giác AHM.