Lời giải
Pha ban đầu của dao động: \(\varphi = - \pi \)
Chu kì dao động của vật: \(T = \frac{{2\pi }}{\omega } = 1\left( s \right)\)
Tại thời điểm \(t = \frac{8}{3}\left( s \right)\), ta có: \(t = \frac{{8T}}{3} = 2T + \frac{{2T}}{3}\)
Trong khoảng thời gian \(\frac{{2T}}{3}\), vật quay được góc: \(\Delta \varphi = \omega \Delta t = \frac{{2\pi }}{T}.\frac{{2T}}{3} = \frac{{4\pi }}{3}\left( {rad} \right)\)
Biểu diễn trên VTLG ta có:
Từ VTLG, ta thấy quãng đường vật đi được là: \(S = 2.4.8 + 2.8 + \left( {8 - 4} \right) = 84\left( {cm} \right)\)
Đáp án đúng: C