Thứ sáu, 15/11/2024
IMG-LOGO

Câu hỏi:

18/06/2024 44

Hai đường tròn (O) và (O’) cắt nhau tại A và B. Gọi M là trung điểm của OO’. Đường thẳng qua A cắt các đường tròn (O) và (O’) lần lượt ở C và D.

a) Khi CD MA, chứng minh AC = AD.

b) Khi CD đi qua A và không vuông góc với MA.

i) Vẽ đường kính AE của (O), AE cắt (O’) ở H. Vẽ đường kính AF của (O’), AF cắt (O) ở G. Chứng minh AB, EG, FH đồng quy.

ii) Tìm vị trí của CD để đoạn CD có độ dài lớn nhất.

Trả lời:

verified Giải bởi Vietjack

a)

Hai đường tròn (O) và (O’) cắt nhau tại A và B. Gọi M là trung điểm của OO’ (ảnh 1)

Gọi E, F theo thứ tự là trung điểm của AC, AD.

Suy ra OE AC và AE = CE; O’F AD và AF = DF.

Mà MA CD (giả thiết).

Do đó OE // MA // O’F.

Khi đó tứ giác OO’FE là hình thang.

Hình thang OO’FE có MA // OE // O’F và M là trung điểm của OO’.

Suy ra MA là đường trung bình của hình thang OO’FE.

Do đó AE = AF.

Vì vậy 2AE = 2AF.

Vậy AC = AD (điều phải chứng minh).

b)

Hai đường tròn (O) và (O’) cắt nhau tại A và B. Gọi M là trung điểm của OO’ (ảnh 2)

i) Gọi I là giao điểm của EG và FH.

Đường tròn (O) có AE là đường kính.

Suy ra AG GE và AB BE.

Đường tròn (O’) có AF là đường kính.

Suy ra AH FH và AB BF.

Ta có AB BE (chứng minh trên) và AB BF (chứng minh trên).

Suy ra ba điểm E, B, F thẳng hàng.

Do đó AB EF.

Tam giác IEF có hai đường cao EH và FG cắt nhau tại A.

Suy ra A là trực tâm của tam giác IEF.

Mà AB EF (chứng minh trên).

Do đó ba điểm I, A, B thẳng hàng.

Vậy AB, EG, FH đồng quy tại I.

ii) Kẻ OP CD và O’Q CD.

Suy ra P, Q lần lượt là trung điểm của AC, AD và OP // O’Q.

Khi đó AC = 2AP và AD = 2AQ.

Suy ra AC + AD = 2AP + 2AQ.

Vì vậy CD = 2PQ.

Do đó CD lớn nhất khi và chỉ khi PQ lớn nhất.

Ta có tứ giác OO’QP là hình thang vuông tại P, Q (vì OP // O’Q và OP PQ).

Suy ra PQ ≤ OO’.

Dấu “=” xảy ra OO’QP là hình chữ nhật.

PQ // OO’.

CD // OO’.

Vậy CD // OO’ thì CD có độ dài lớn nhất.

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Có tất cả 40 con vừa gà vừa chó. Số chân chó nhiều hơn số chân gà là 16 chân. Hỏi có bao nhiêu gà, bao nhiêu chó?

Xem đáp án » 30/07/2023 119

Câu 2:

Gọi S là tập hợp các giá trị của m để bất phương trình x2 – 2mx + 5m – 8 ≤ 0 có tập nghiệm là [a; b] sao cho b – a = 4. Tổng tất cả các phần tử của S là

Xem đáp án » 30/07/2023 108

Câu 3:

Số viên bi của ba bạn Minh, Hùng, Dũng tỉ lệ với các số 2; 4; 5. Tính số viên bi của mỗi bạn, biết rằng 3 lần số bi của bạn Hùng nhiều hơn 2 lần số bi của bạn Minh là 40 viên.

Xem đáp án » 30/07/2023 104

Câu 4:

Cho tam giác ABC có các góc thỏa mãn \(\frac{{\sin A}}{1} = \frac{{\sin B}}{2} = \frac{{\sin C}}{{\sqrt 3 }}\). Tính số đo các góc của tam giác.

Xem đáp án » 30/07/2023 97

Câu 5:

Cho tam giác ABC vuông tại A. Về phía ngoài tam giác ABC, vẽ hai tam giác vuông cân ADB (DA = DB) và ACE (EA = EC). Gọi M là trung điểm BC, I là giao điểm của DM với AB, K là giao điểm của EM với AC. Chứng minh:

a) Ba điểm D, A, E thẳng hàng.

b) Tứ giác IAKM là hình chữ nhật.

c) Tam giác DME là tam giác vuông cân.

Xem đáp án » 30/07/2023 89

Câu 6:

Số viên bi của ba bạn Minh, Hùng, Dũng tỉ lệ với các số 2; 4; 5. Tính số viên bi của mỗi bạn biết rằng ba bạn có 44 viên bi.

Xem đáp án » 30/07/2023 69

Câu 7:

Cho a, b, c > 0 thỏa mãn abc = 1. Chứng minh rằng:

\(\frac{1}{{{a^3}\left( {b + c} \right)}} + \frac{1}{{{b^3}\left( {c + a} \right)}} + \frac{1}{{{c^3}\left( {a + b} \right)}} \ge \frac{3}{2}\).

Xem đáp án » 30/07/2023 68

Câu 8:

Cho tam giác ABC vuông cân tại A. Trên các cạnh góc vuông AB, AC lấy D và E sao cho AD = AE. Qua D vẽ đường thẳng vuông góc với BE cắt BC ở K. Qua A vẽ đường thẳng vuông góc với BE cắt BC ở H. Gọi M là giao điểm của DK và AC. Chứng minh rằng:

a) ∆BAE = ∆CAD;

b) ∆MDC cân;

c) HK = HC.

Xem đáp án » 30/07/2023 68

Câu 9:

Cho tứ giác ABCD có hai đường chéo AC và BD vuông góc với nhau. Gọi M, N, P, Q lần lượt là trung điểm của AB, BC, CD, DA.

a) Tứ giác MNPQ là hình gì? Vì sao?

b) Để tứ giác MNPQ là hình vuông thì tứ giác ABCD cần có điều kiện gì?

c) Cho AC = 6 cm, BD = 8 cm. Hãy tính diện tích tứ giác MNPQ.

Xem đáp án » 30/07/2023 67

Câu 10:

Cho tập hợp A = {1; 2; 3; 4; 5; 6; 7; 8}. Hỏi từ tập A có thể lập được bao nhiêu số tự nhiên có 6 chữ số khác nhau và phải có mặt các chữ số 1, 2, 3 sao cho chúng không đứng cạnh nhau?

Xem đáp án » 30/07/2023 64

Câu 11:

Chứng minh rằng nếu p là một số nguyên tố thì np – n chia hết cho p với mọi số nguyên dương n.

Xem đáp án » 30/07/2023 64

Câu 12:

Cho tam giác ABC có \(\widehat A = 60^\circ \). Các tia phân giác của \(\widehat B\)\(\widehat C\) cắt nhau ở I, cắt cạnh AC, AB ở D và E. Tia phân giác của \(\widehat {BIC}\) cắt BC ở F.

a) Tính \(\widehat {BIC}\).

b) Chứng minh ID = IE = IF.

c) Chứng minh tam giác DEF đều.

d) Chứng minh I là giao điểm các đường phân giác của hai tam giác ABC và DEF.

Xem đáp án » 30/07/2023 64

Câu 13:

Cho tam giác ABC (\(\widehat B = 90^\circ \)) có đường cao BD. Gọi E, F lần lượt là trung điểm của BD, DC và H là giao điểm của AE, BF. Tính \(\widehat {AHB}\)?

Xem đáp án » 30/07/2023 62

Câu 14:

Tìm tất cả các cặp số nguyên (x, y) thỏa mãn x4 – x3 + 1 = y2.

Xem đáp án » 30/07/2023 62

Câu 15:

Chứng minh các biểu thức sau không phụ thuộc vào α:

a) \(\sqrt {{{\sin }^4}\alpha + 4\left( {1 - {{\sin }^2}\alpha } \right)} + \sqrt {{{\cos }^4}\alpha + 4{{\sin }^2}\alpha } \).

b) 2(sin6α + cos6α) – 3(cos4α + sin4α).

c) \(\frac{2}{{\tan \alpha - 1}} + \frac{{\cot \alpha + 1}}{{\cot \alpha - 1}}\,\,\,\left( {\tan \alpha \ne 1} \right)\).

Xem đáp án » 30/07/2023 61

Câu hỏi mới nhất

Xem thêm »
Xem thêm »