Cho hàm số \[\frac{1}{4}{x^2}\] có đồ thị (P) và I(0; 3).
a) Tìm tọa độ giao điểm A và B của (P) và đường thẳng y = 2x – 3.
b) Tính độ dài AB.
c) Tính diện tích tam giác OAB.
d) Tìm tọa độ điểm M trên (P) sao cho độ dài MI nhỏ nhất.
a) Phương trình hoành độ giao điểm của (P) và y = 2x – 3 là: \[\frac{1}{4}{x^2} = 2x - 3\].
⇔ x2 – 8x + 12 = 0.
⇔ x = 6 hoặc x = 2.
Với x = 6, ta có: y = 2.6 – 3 = 9.
Suy ra tọa độ A(6; 9).
Với x = 2, ta có: y = 2.2 – 3 = 1.
Suy ra tọa độ B(2; 1).
Vậy A(6; 9) và B(2; 1).
b)
Ta có BC = 6 – 2 = 4, AC = 9 – 1 = 8.
Tam giác ABC vuông tại C: AB2 = AC2 + BC2 = 82 + 42 = 80.
Suy ra \(AB = 4\sqrt 5 \).
c) Ta có OE = 2, BE = 1, AD = 9, OD = 6, DE = BC = 4.
Lại có:
⦁ \({S_{\Delta OAD}} = \frac{1}{2}OD.AD = \frac{1}{2}.6.9 = 27\);
⦁ \({S_{\Delta OBE}} = \frac{1}{2}OE.BE = \frac{1}{2}.2.1 = 1\);
⦁ \({S_{BEDA}} = \frac{{DE.\left( {BE + AD} \right)}}{2} = \frac{{4.\left( {1 + 9} \right)}}{2} = 20\).
Khi đó ta có SOAB = SOAD – SOBE – SBEDA = 27 – 1 – 20 = 6.
Vậy SOAB = 6 (đvS).
d) Do M ∈ (P) nên tọa độ M có dạng \(M\left( {m;\frac{{{m^2}}}{4}} \right)\).
Suy ra \(IM = \sqrt {{m^2} + {{\left( {\frac{{{m^2}}}{4} - 3} \right)}^2}} = \sqrt {{{\left( {\frac{{{m^2}}}{4} - \frac{1}{2}} \right)}^2} + \frac{{35}}{4}} \ge \frac{{\sqrt {35} }}{2}\).
Dấu “=” xảy ra \( \Leftrightarrow \frac{{{m^2}}}{4} = \frac{1}{2} \Leftrightarrow m = \pm \sqrt 2 \).
Với \(m = \sqrt 2 \), ta có tọa độ \(M\left( {\sqrt 2 ;\frac{1}{2}} \right)\).
Với \(m = - \sqrt 2 \), ta có tọa độ \(M\left( { - \sqrt 2 ;\frac{1}{2}} \right)\).
Vậy \(M\left( {\sqrt 2 ;\frac{1}{2}} \right)\) và \(M\left( { - \sqrt 2 ;\frac{1}{2}} \right)\) thỏa mãn yêu cầu bài toán.
Có tất cả 40 con vừa gà vừa chó. Số chân chó nhiều hơn số chân gà là 16 chân. Hỏi có bao nhiêu gà, bao nhiêu chó?
Gọi S là tập hợp các giá trị của m để bất phương trình x2 – 2mx + 5m – 8 ≤ 0 có tập nghiệm là [a; b] sao cho b – a = 4. Tổng tất cả các phần tử của S là
Số viên bi của ba bạn Minh, Hùng, Dũng tỉ lệ với các số 2; 4; 5. Tính số viên bi của mỗi bạn, biết rằng 3 lần số bi của bạn Hùng nhiều hơn 2 lần số bi của bạn Minh là 40 viên.
Cho tam giác ABC có các góc thỏa mãn \(\frac{{\sin A}}{1} = \frac{{\sin B}}{2} = \frac{{\sin C}}{{\sqrt 3 }}\). Tính số đo các góc của tam giác.
Cho tam giác ABC vuông tại A. Về phía ngoài tam giác ABC, vẽ hai tam giác vuông cân ADB (DA = DB) và ACE (EA = EC). Gọi M là trung điểm BC, I là giao điểm của DM với AB, K là giao điểm của EM với AC. Chứng minh:
a) Ba điểm D, A, E thẳng hàng.
b) Tứ giác IAKM là hình chữ nhật.
c) Tam giác DME là tam giác vuông cân.
Số viên bi của ba bạn Minh, Hùng, Dũng tỉ lệ với các số 2; 4; 5. Tính số viên bi của mỗi bạn biết rằng ba bạn có 44 viên bi.
Cho a, b, c > 0 thỏa mãn abc = 1. Chứng minh rằng:
\(\frac{1}{{{a^3}\left( {b + c} \right)}} + \frac{1}{{{b^3}\left( {c + a} \right)}} + \frac{1}{{{c^3}\left( {a + b} \right)}} \ge \frac{3}{2}\).
Cho tam giác ABC vuông cân tại A. Trên các cạnh góc vuông AB, AC lấy D và E sao cho AD = AE. Qua D vẽ đường thẳng vuông góc với BE cắt BC ở K. Qua A vẽ đường thẳng vuông góc với BE cắt BC ở H. Gọi M là giao điểm của DK và AC. Chứng minh rằng:
a) ∆BAE = ∆CAD;
b) ∆MDC cân;
c) HK = HC.
Cho tứ giác ABCD có hai đường chéo AC và BD vuông góc với nhau. Gọi M, N, P, Q lần lượt là trung điểm của AB, BC, CD, DA.
a) Tứ giác MNPQ là hình gì? Vì sao?
b) Để tứ giác MNPQ là hình vuông thì tứ giác ABCD cần có điều kiện gì?
c) Cho AC = 6 cm, BD = 8 cm. Hãy tính diện tích tứ giác MNPQ.
Cho tam giác ABC có \(\widehat A = 60^\circ \). Các tia phân giác của \(\widehat B\) và \(\widehat C\) cắt nhau ở I, cắt cạnh AC, AB ở D và E. Tia phân giác của \(\widehat {BIC}\) cắt BC ở F.
a) Tính \(\widehat {BIC}\).
b) Chứng minh ID = IE = IF.
c) Chứng minh tam giác DEF đều.
d) Chứng minh I là giao điểm các đường phân giác của hai tam giác ABC và DEF.
Cho tập hợp A = {1; 2; 3; 4; 5; 6; 7; 8}. Hỏi từ tập A có thể lập được bao nhiêu số tự nhiên có 6 chữ số khác nhau và phải có mặt các chữ số 1, 2, 3 sao cho chúng không đứng cạnh nhau?
Chứng minh rằng nếu p là một số nguyên tố thì np – n chia hết cho p với mọi số nguyên dương n.
Cho tam giác ABC (\(\widehat B = 90^\circ \)) có đường cao BD. Gọi E, F lần lượt là trung điểm của BD, DC và H là giao điểm của AE, BF. Tính \(\widehat {AHB}\)?
Chứng minh các biểu thức sau không phụ thuộc vào α:
a) \(\sqrt {{{\sin }^4}\alpha + 4\left( {1 - {{\sin }^2}\alpha } \right)} + \sqrt {{{\cos }^4}\alpha + 4{{\sin }^2}\alpha } \).
b) 2(sin6α + cos6α) – 3(cos4α + sin4α).
c) \(\frac{2}{{\tan \alpha - 1}} + \frac{{\cot \alpha + 1}}{{\cot \alpha - 1}}\,\,\,\left( {\tan \alpha \ne 1} \right)\).