IMG-LOGO

Câu hỏi:

11/07/2024 109

Cho tam giác ABC có cạnh AB = 14 cm, \[\widehat C = 120^\circ \], tổng hai cạnh còn lại là 16 cm. Tính độ dài hai cạnh còn lại.

Trả lời:

verified Giải bởi Vietjack

Theo định lí cosin, ta có:

AB2 = BC2 + AC2 – 2.BC.AC.cos\[\widehat C\]

 196 = BC2 + AC2 – 2.BC.AC.cos120°

 196 = BC2 + AC2 + BC.AC (1)

Ta lại có: BC + AC = 16  AC = 16 – BC thay vào (1), ta được:

196 = BC2 + (16 – BC)2 + BC(16 – BC)

 BC2 – 16BC + 60 = 0 

\[ \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{BC = 10}\\{BC = 6\,\,}\end{array}} \right.\]

\[ \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{AC = 6\,\,\,}\\{AC = 10\,}\end{array}} \right.\]

Vậy AC = 6 cm và BC = 10 cm hoặc AC = 10 cm và BC = 6 cm.

Câu trả lời này có hữu ích không?

1

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tam giác ABC thỏa mãn sin2 A = sin2 B + sin2 C. Chứng minh rằng tam giác ABC vuông. Biết AB = c; AC = b; BC = a.

Xem đáp án » 01/08/2023 107

Câu 2:

Cho hình thang cân ABCD (AB // CD, AB < CD). Gọi O là giao điểm của AD và BC. Gọi E là giao điểm của AC và BD. Chứng minh tam giác AOB cân tại O.

Xem đáp án » 01/08/2023 96

Câu 3:

Một đội công nhân gồm 8 người được giao đắp một đoạn mương trong 20 ngày. Sau khi đắp được 5 ngày, đội đó được bổ sung thêm 16 người về cùng làm. Hỏi đơn vị đó đắp xong đoạn mương được giao trong bao nhiêu ngày? Biết rằng năng suất làm việc của mọi người trong một ngày là như nhau.

Xem đáp án » 01/08/2023 95

Câu 4:

Cho nửa đường tròn tâm O bán kính R đường kính AB. Gọi Ax, By là các tia tiếp tuyến của nửa đường tròn và thuộc cùng 1 nửa mặt phẳng có chứa nửa đường tròn. Qua M thuộc nửa đường tròn vẽ tiếp tuyến với nửa đường tròn cắt Ax, By lần lượt tại C, D. Chứng minh rằng CD = AC + BD, \[\widehat {COD} = 90^\circ \].

Xem đáp án » 01/08/2023 91

Câu 5:

Cho tam giác ABC cân tại A, M là trung điểm của BC. ME vuông góc với AB, MF vuông góc với AC. Chứng minh ME = MF và AM là trung trực của EF.

Xem đáp án » 01/08/2023 89

Câu 6:

Cho góc nhọn xOy và tia phân giác Oz của góc đó. Trên Ox lấy điểm A, trên Oy lấy điểm b sao cho OA = OB. Trên Oz lấy điểm I. Chứng minh: ∆AOI = ∆BOI.

Xem đáp án » 01/08/2023 89

Câu 7:

Cho hình bình hành ABCD. Gọi O là giao điểm của 2 đường chéo M,N là trung điểm của OD và OB. Gọi E là giao điểm của AM và CD. F là giao điểm của CN và AB. Chứng minh: Tứ giác AMCN là hình bình hành.

Xem đáp án » 01/08/2023 87

Câu 8:

Cho tam giác ABC, các đường trung tuyến BD, CE. Gọi M, N theo thứ tự là trung điểm của BE, CD. Gọi I, K theo thứ tự là giao điểm của MN với BD, CE. Chứng minh MI = IK = KN.

Xem đáp án » 01/08/2023 85

Câu 9:

Cho góc nhọn xOy và tia phân giác Oz của góc đó. Trên Ox lấy điểm A, trên Oy lấy điểm b sao cho OA = OB. Trên Oz lấy điểm I. Chứng minh: AB vuông góc với OI.

Xem đáp án » 01/08/2023 85

Câu 10:

Cho tam giác ABC vuông tại A, đường cao AH, AB = 6 cm, AC = 8 cm. Tính BC, AH.

Xem đáp án » 01/08/2023 82

Câu 11:

Cho tam giác ABC có AB = 6 cm, AC = 9 cm, BC = 10 cm, đường phân giác trong AD, đường phân giác ngoài AE. Tính DB, EB.

Xem đáp án » 01/08/2023 78

Câu 12:

Cho nửa đường tròn tâm O bán kính R đường kính AB. Gọi Ax By là các tia tiếp tuyến của nửa đường tròn và thuộc cùng 1 nửa mặt phẳng có chứa nửa đường tròn. Qua M thuộc nửa đường tròn vẽ tiếp tuyến với nửa đường tròn cắt Ax, By lần lượt tại C, D. Chứng minh rằng AC. BD = R2.

Xem đáp án » 01/08/2023 78

Câu 13:

Cho tam giác ABC. Gọi M, N, P lần lượt là trung điểm của BC, CA, AB và O là 1 điểm tùy ý. Chứng minh rằng: \[\overrightarrow {AM} + \overrightarrow {BN} + \overrightarrow {CP} = \overrightarrow 0 \].

Xem đáp án » 01/08/2023 77

Câu 14:

Cho A là tập hợp các học sinh lớp 10 đang học ở trường em và B là tập hợp các học sinh đang học môn Tiếng Anh của trường em. Hãy diễn đạt bằng lời các tập hợp sau: A B; A ∩ B; A \ B; B \ A.

Xem đáp án » 01/08/2023 77

Câu 15:

Cho tam giác ABC có AB = 12 cm, AC = 18 cm. Gọi M là chân đường vuông góc. Kẻ từ B đến tia phân giác \[\widehat A\]. Gọi M là trung điểm của IC. Tính HM.

Xem đáp án » 01/08/2023 76

Câu hỏi mới nhất

Xem thêm »
Xem thêm »