Thứ năm, 09/01/2025
IMG-LOGO

Câu hỏi:

21/07/2024 69

Một thầy giáo có 10 cuốn sách toán đôi 1 khác nhau , trong đó có 3 cuốn đại số, 4 cuốn giải tích và 3 cuốn hình học , Ông muốn lấy ra 5 cuốn và tặng cho 5 học sinh sao cho sau khi tặng mỗi loại sách còn lại ít nhất 1 cuốn . Hỏi có bao nhiêu cách tặng?

Trả lời:

verified Giải bởi Vietjack

Số cách lấy ra 5 cuốn sách và đem tặng cho 5 học sinh là:

S = A105= 30240 cách (chọn 5 cuốn trong 10 cuốn sau đó có sắp xếp 5 cuốn)

Số cách chọn sao cho không còn sách đại số là:

A = C72.5! = 2520 cách 

(chọn hết 3 cuốn Đại số có 1 cách, chọn 2 cuốn nữa trong 7 cuốn gồm 4 cuốn Giải tích và 3 cuốn Hình, sau đó xếp cho 5 bạn)

Số cách chọn sao cho không còn sách Giải tích là:

B = C61. 5! = 720 cách

(chọn hết 4 cuốn giải tích có 1 cách, chọn 1 cuốn trong 6 cuốn gồm 3 cuốn đại số và 3 cuốn hình, xếp 5 cuốn vừa chọn cho 5 bạn)

Số cách chọn sao cho không còn sách Hình là:

C =C72 .5! = 2520 cách

(chọn hết 3 cuốn Hình có 1 cách, chọn thêm 2 cuốn trong 7 cuốn gồm 3 cuốn đại và 4 cuốn Giải tích)

Vậy số cách tặng thỏa mãn yêu cầu bài toán là:

S – A – B – C = 24480 cách.

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tam giác ABC vuông tại A, đường cao AH, biết AB = 9cm, AC = 12cm. Tính BC, AH, HB, HC, diện tích tam giác ABC.

Xem đáp án » 15/08/2023 384

Câu 2:

Cho tam giác ABC. Gọi M, N, P lần lượt là trung điểm của BC, CA, AB. Chứng minh rằng: BM+CN+AP=0 .

Xem đáp án » 15/08/2023 229

Câu 3:

Cho tam giác ABC. Hai điểm M, N được xác định bởi hệ thức: BC+MA=0,ABNA3AC=0. Tìm mệnh đề đúng trong các mệnh đề sau: (1) MN và AC song song; (2) MN và AC cắt nhau; (3) MN = AC; (4) 3 điểm M, A, C thẳng hàng

Xem đáp án » 15/08/2023 217

Câu 4:

Cho tam giác ABC vuông tại A, có đường cao AH. Từ H kẻ HE vuông góc với AB tại E, HF vuông góc với AC tại F.

a) Cho biết AB = 3cm, ACB^  = 30°. Tính độ dài các đoạn AC, HA.

b) Chứng minh: BE.BA + CF.CA + 2.HB.HC = BC2.

Xem đáp án » 15/08/2023 214

Câu 5:

Cho tam giác ABC có đường cao AD, và trực tâm H. Gọi I, K lần lượt là trung điểm của HA, HB. Gọi E, F lần lượt là trung điểm của BC, AC. Chứng minh

a) Bốn điểm E, F, I, K cùng thuộc một đường tròn.

b) Điểm D cũng thuộc đường tròn đi qua bốn điểm E, F, I, K.

Xem đáp án » 16/08/2023 154

Câu 6:

Cho tam giác ABC và ba điểm M, N, P thỏa mãn MA+2MB=0, 4NB+NC=0 , PC+2PA=0 . Chứng minh rằng M, N, P thẳng hàng.

Xem đáp án » 15/08/2023 152

Câu 7:

Cho tam giác ABC thỏa mãn sinA=sinB+sinCcosB+cosC . Chứng minh tam giác ABC là tam giác vuông.

Xem đáp án » 15/08/2023 148

Câu 8:

Xét mệnh đề kéo theo P: “Nếu 18 chia hết cho 3 thì tam giác cân có 2 cạnh bằng nhau” và Q: “Nếu 17 là số chẵn thì 25 là số chính phương”. Xét tính đúng, sai của mệnh đề P và Q?

Xem đáp án » 15/08/2023 146

Câu 9:

Cho hình chữ nhật ABCD có AB = 4cm, BC = 3cm. Kẻ BH vuông góc với AC tại H, tia BH cắt AD tại E.

1) Tính BH, góc BAC.

2) Chứng minh: BH.BE = CD2.

Xem đáp án » 15/08/2023 141

Câu 10:

Lớp 10A chọn ra một số học sinh tham gia làm bài khảo sát học sinh giỏi môn Toán. Đề thi có 3 câu. Sau khi chấm bài giáo viên tổng kết được như sau: Có 5 học sinh làm được câu 1, có 6 học sinh làm được câu 2, có 4 học sinh làm được câu 3. Có 3 học sinh làm được câu 1 và câu 2, có 2 học sinh làm được câu 1 và câu 3, có 1 học sinh làm được câu 2 và câu 3 và chỉ có 1 học sinh làm được cả 3 câu. Hỏi có tất cả bao nhiêu học sinh tham gia làm bài khảo sát?

Xem đáp án » 15/08/2023 136

Câu 11:

Cho tam giác ABC vuông tại A, đường cao AH. Biết AB = 9cm ; AC=12cm

a) Tính số đo góc B (làm tròn đến độ) và độ dài BH

b) Gọi E, F là hình chiếu của H trên AB, AC. Chứng minh AE.AB = AF.AC.

Xem đáp án » 15/08/2023 130

Câu 12:

Cho tam giác ABC có AB = AC. Tia phân giác của góc A cắt BC tại D.                                         

a) Chứng minh tam giác ABD bằng tam giác ADC.                                                                

b) Kẻ DH vuông góc với AB (H thuộc AB), DK vuông góc với AC (K thuộc AC). Chứng minh DH = CK.                                                       

c) Biết A^ = 4B^ , tính số đo các góc của tam giác ABC.

Xem đáp án » 15/08/2023 120

Câu 13:

Cho đường tròn (O,R) cố định. Từ M nằm ngoài đường tròn (O) kẻ 2 tiếp tuyến MA,MB (A,B là các tiếp điểm). Gọi H là giao điểm của OM, AB.

a) Chứng minh: OM vuông góc với AB và OH.OM = R2.

b) Từ M kẻ cát tuyến MNP với đường tròn (O) (N nằm giữa M,P), gọi I là trung điểm NP (I khác O). Chứng minh: A, M, O, I thuộc một đường tròn và tìm tâm của đường tròn đó.

c) Qua N kẻ tiếp tuyến với đường tròn (O), cắt MA, MB theo thứ tự C,D. Biết MA = 5cm, tính chu vi tam giác MCD.

d) Qua O kẻ đường thẳng d vuông góc với OM, cắt MA, MB lần lượt tại E, F. Xác định vị trí của điểm M để diện tích tam giác MEF nhỏ nhất.

Xem đáp án » 15/08/2023 119

Câu 14:

Cho tam giác ABC nhọn, các đường cao AD,BE,CF cắt nhau tại H.

a) Chứng minh: Tam giác ABE và tam giác AFC đồng dạng, AF. AB = AE . AC.

b) Chứng minh AEF^  = ABC^ .

c) Cho AE = 3cm, AB = 6cm. Chứng minh: SABC = 4SAEF.

Xem đáp án » 15/08/2023 119

Câu 15:

Cho tam giác ABC, N là điểm xác định bởi CN=12BC , G là trọng tâm tam giác ABC. Hệ thức tính  AC theo AG  và AN  là?

Xem đáp án » 16/08/2023 117

Câu hỏi mới nhất

Xem thêm »
Xem thêm »