Thứ năm, 09/01/2025
IMG-LOGO

Câu hỏi:

16/07/2024 91

Giải bất phương trình:

a) 3x2 – x + 1 > 0

b) 2x2 – 5x + 4 < 0.

Trả lời:

verified Giải bởi Vietjack

a) Ta có: 3x2 – x + 1

\( = 3\left( {{x^2} - \frac{1}{3}x} \right) + 1\)

\( = 3\left( {{x^2} - \frac{1}{3}x + \frac{1}{{36}}} \right) + \frac{{11}}{{12}}\)

\( = 3{\left( {x - \frac{1}{6}} \right)^2} + \frac{{11}}{{12}}\)

Ta có:

\({\left( {x - \frac{1}{6}} \right)^2} \ge 0,\forall x \in \mathbb{R}\)

Suy ra:

\(3{x^2} - x + 1 = 3{\left( {x - \frac{1}{6}} \right)^2} + \frac{{11}}{{12}} \ge \frac{{11}}{{12}} > 0;\forall x \in \mathbb{R}\)

Do đó bất phương trình 3x2 – x + 1 > 0 luôn đúng với mọi x R

Vậy tập nghiệm của bất phương trình là R.

b) Ta có:

2x2 – 5x + 4

\( = 2\left( {{{\rm{x}}^2} - \frac{5}{2}x} \right) + 4\)

\( = 2\left( {{{\rm{x}}^2} - \frac{5}{2}x + \frac{{25}}{{16}}} \right) + \frac{7}{8}\)

\( = 2{\left( {{\rm{x}} - \frac{5}{4}} \right)^2} + \frac{7}{8}\)

\(2{\left( {{\rm{x}} - \frac{5}{4}} \right)^2} \ge 0;\forall x \in \mathbb{R}\)

Nên \(2{\left( {{\rm{x}} - \frac{5}{4}} \right)^2} + \frac{7}{8} > 0;\forall x \in \mathbb{R}\)

Suy ra bất phương trình 2x2 – 5x + 4 < 0 vô nghiệm

Vậy bất phương trình 2x2 – 5x + 4 < 0 vô nghiệm.

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Từ một điểm M nằm ngoài đường tròn (O) vẽ hai tiếp tuyến MP và MQ với đường tròn (P, Q là tiếp điểm) và 1 cát tuyến MAB (A nằm giữa M và B). Gọi I là trung điểm của AB.

a) Chứng minh 5 điểm M, P, O, I, Q cùng thuộc 1 đường tròn.

b) PQ cắt AB tại E. Chứng minh MP2 = ME . MI.

c) Qua A kẻ đường thẳng song song MP cắt PQ, PB lần lượt tại H và K. Chứng minh KB = 2HI.

Xem đáp án » 17/08/2023 160

Câu 2:

Phân tích đa thức thành nhân tử: (a – b)3 + (b – c)3 + (c – a)3.

Xem đáp án » 17/08/2023 133

Câu 3:

Tính nhanh giá trị của đa thức: 3(x – 3)(x + 7) + (x – 4)2 + 48 với x = 0,5.

Xem đáp án » 17/08/2023 117

Câu 4:

Tìm giá trị nhỏ nhất của biểu thức

P = (x – 1)(x + 2)(x + 3)(x + 6).

Xem đáp án » 17/08/2023 111

Câu 5:

Thiết diện qua trục của một hình trụ là hình vuông có chu vi là 8a. Diện tích xung quanh của hình trụ đó là:

Xem đáp án » 17/08/2023 110

Câu 6:

Phân tích đa thức thành nhân tử: x2 – 2x – 15.

Xem đáp án » 17/08/2023 110

Câu 7:

Hãy tìm một số hình có tâm đối xứng trong thực tiễn.

Xem đáp án » 17/08/2023 109

Câu 8:

Phân tích đa thức thành nhân tử: x2 + 2xy + y2 – x – y – 12.

Xem đáp án » 17/08/2023 108

Câu 9:

Trong số 50 học sinh của lớp 10A có 15 bạn đucợ xếp loại học lực giỏi, 25 bạn được xếp loại hạnh kiểm tốt, trong đó có 10 bạn vừa được học sinh giỏi vừa được hạnh kiểm tốt. Khi đó lớp 10A có bao nhiêu bạn được khen thưởng, biết rằng muốn được khen thưởng bạnd dó phải có học lực giỏi hay hạnh kiểm tốt.

Xem đáp án » 17/08/2023 106

Câu 10:

Cho hình vuông ABCD, M là một điểm nằm giữa B và C. Kẻ AN vuông góc với AM, AP vuông góc với MN (N và P thuộc đường thẳng CD).

a) Chứng minh tam giác AMN vuông cân và AN2 = NC . NP

b) Tính tỉ số chu vi tam giác CMP và chu vi hình vuông ABCD.

c) Gọi Q là giao điểm của tia AM và tia DC. Chứng minh tổng \(\frac{1}{{A{M^2}}} + \frac{1}{{A{Q^2}}}\) không đổi khi điểm M thay đổi trên cạnh BC.

Xem đáp án » 17/08/2023 102

Câu 12:

Cho tam giác ABC có trọng tâm G. Gọi A’, B’, C’ lần lượt là trung điểm của các cạnh BC, CA, AB. Phép vị tự tâm G biến tam giác ABC thành tam giác A’B’C’ có tỉ số vị tự bằng bao nhiêu?

Xem đáp án » 17/08/2023 102

Câu 13:

Chứng minh rằng trong tam giác ABC, ta có:

tanA + tanB + tanC = tanA.tanB.tanC \(\left( {\widehat A,\widehat B,\widehat C \ne \frac{\pi }{2}} \right)\).

Xem đáp án » 17/08/2023 100

Câu 14:

Từ các số 1, 2, 3, 4, 5 có thể lập được bao nhiêu số tự nhiên có 5 chữ số khác nhau? Tính tổng tất cả các số tự nhiên đó.

Xem đáp án » 17/08/2023 99

Câu 15:

Giải phương trình sau: \[{\rm{tanx}} + \tan \left( {x + \frac{\pi }{4}} \right) = 1\].

Xem đáp án » 17/08/2023 99

Câu hỏi mới nhất

Xem thêm »
Xem thêm »