Cho tam giác ABC, ba đường trung tuyến AD, BE và CF cắt nhau tại G. Trên BE, CF lần lượt lấy các điểm M và N sao cho . Khẳng định nào sau đây là sai?
A. ;
B. GD, BN và CM đồng quy;
C. CN = NG;
Hướng dẫn giải:
Đáp án đúng là: D
ΔABC có ba đường trung tuyến AD, BE và CF cắt nhau tại G nên G là trọng tâm của ΔABC nên và Do đó khẳng định A là đúng, D là sai.
Mặt khác nên BM = MG.
Chứng minh tương tự, ta được CN = NG. Do đó khẳng định C là đúng.
Xét ΔGBC có GD, BN và CM là ba đường trung tuyến nên đồng quy tại một điểm. Do đó khẳng định B là đúng.
Vậy ta chọn phương án D.
Cho tam giác ABC, tia phân giác AD. Các đường phân giác ngoài tại đỉnh B và C cắt nhau ở E. Khẳng định nào sau đây là sai?
Cho tam giác ABC có Vẽ các đường phân giác BD, CE. Đường thẳng chứa tia phân giác ngoài tại đỉnh A của tam giác ABC cắt đường thẳng BC tại F. Khẳng định nào sau đây là sai?
Cho tam giác ABC cân tại A có đường trung tuyến AD và đường phân giác CF. Trên cạnh AC lấy điểm E sao cho AE = AF. Khẳng định nào sau đây là đúng?
Cho tam giác ABC. Các đường phân giác của các góc ngoài của tam giác cắt nhau tại D, E, F (D nằm trong góc A, E nằm trong góc B, F nằm trong góc C). Khẳng định nào sau đây là đúng?
Cho tam giác MNP cân tại M có G là trọng tâm, I là điểm nằm trong tam giác và cách đều ba cạnh của tam giác đó. Khẳng định nào sau đây là sai?
Cho ΔABC có điểm I cách đều ba cạnh của tam giác. Gọi N là giao điểm của hai tia phân giác góc ngoài tại B và C. Khi đó ta có:
Cho tam giác MNP cân tại P. Hai đường trung tuyến MH và NK cắt nhau tại G. Kéo dài PG cắt MN tại I. Gọi E, F lần lượt là trung điểm của GP và GM. Trong các khẳng định sau có bao nhiêu khẳng định đúng?
(I) Các đường thẳng PF, GK, ME đồng quy;
(II) DPIN = DPIM;
(III) G là trọng tâm tam giác MNP;