a) Cho đoạn thẳng BC = 4cm. Vẽ tam giác đều ABC. Có thể vẽ được bao nhiêu tam giác như vậy?
b) Cho BC = 4cm. Vẽ hình vuông ABCD. Có thể vẽ được bao nhiêu hình vuông như vậy?
c) Vẽ hình chữ nhật có một cạnh dài 6cm; một cạnh dài 4 cm.
d) Vẽ hình thoi có cạnh bằng 3 cm và độ dài đường chéo bằng 6cm.
a) Dựng hai đường tròn tâm B và C bán kính 4cm. Hai đường tròn cắt nhau tại 2 điểm. Lấy một trong 2 điểm làm điểm A ta vẽ được tam giác đều ABC
Vậy có thể vẽ được 2 tam giác thoả mãn.
b) Vẽ về cùng một phía của đoạn thẳng BC hai đoạn thẳng AB và DC có độ dài là 4cm và vuông góc với BC, sau đó nối AD ta được hình vuông ABCD
Do có hai phía của đoạn thẳng nên có thể vẽ được 2 hình vuông thoả mãn.
c) B1: Vẽ đoạn thẳng dài 6cm
B2: Từ điểm kết thúc của đoạn thẳng ở bước 1 vẽ đoạn thẳng vuông góc với nó và có chiều dài 4cm
B3: Từ điểm kết thúc của đoạn thẳng ở bước 2 vẽ đoạn thẳng vuông góc với nó và có chiều dài 6cm
B4: Từ điểm kết thúc của đoạn thẳng ở bước 3 vẽ đoạn thẳng vuông góc với nó và có chiều dài 4cm, ta được hình chữ nhật thoả mãn.
d) B1: Vẽ đoạn thẳng 3cm
B2: Vẽ 2 đường tròn đường kính 3cm và 6cm lần lượt từ hai đầu mút của đoạn thẳng vẽ ở bước 1. Hai đường tròn cắt nhau tại 2 điểm, nối một trong 2 điểm với các điểm còn lại ta được một tam giác
B3: Vẽ 2 đường tròn đường kính 3cm lần lượt từ hai đầu mút của đoạn thẳng 6cm. Hai đường tròn cắt nhau tại 2 điểm trong đó có 1 điểm trùng với điểm đã có. Nối điểm còn lại với hai đầu mút của đoạn thẳng 6cm ta được hình thoi thoả mãn.
Tìm m để 2 đường thẳng (d) cắt nhau tại 1 điểm trên trục tung cho hàm số y = (m + 2)x + 2m2 + 1 tìm m để hai đường thẳng (d): y = (m + 2)x + 2m2 + 1 và (d'): y = 3x + 3 cắt nhau tại 1 điểm trên trục tung.
Xem hình vẽ, cho biết a// b và c ⊥ a.
a) Đường thẳng c có vuông góc với đường thẳng b không? Vì sao?
b) Cho đường thẳng d cắt hai đường thẳng a và b tại A và B. Cho biết \(\widehat {{A_1}} = 115^\circ \). Tính số đo các góc \(\widehat {{B_2}};\widehat {{B_3}};\widehat {{A_3}}\).
c) Gọi Ax và By lần lượt là tia phân giác của các góc \(\widehat {{A_1}}\) và \(\widehat {{B_3}}\). Chứng minh: Ax //By.
người cùng làm một công việc. Nếu làm riêng, người thứ nhất mất 5 giờ, người thứ hai mất 4 giờ và người thứ ba mất 6 giờ mới làm xong công việc đó. Hỏi nếu ba người cùng làm thì sau 1 giờ làm được bao nhiêu phần công việc.
Một đu quay ở công viên có bán kính bằng 10m. Tốc độ của đu quay là 3 vòng/phút. Hỏi mất bao lâu để đu quay quay được góc 270°?
Cho hình thoi EGHK với O là giao điểm của 2 đường chéo. Biết EG = 15 cm. Tính độ dài của GH, HK, KE?
Chứng minh rằng biểu thức sau luôn dương với mọi x.
a) 9x2 – 6x + 2;
b) x2 + x + 1;
c) 2x2 + 2x + 1.
Cho một cấp số nhân có công bội bằng 3 và số hạng đầu bằng 5. Biết số hạng chính giữa là 32805. Hỏi cấp số nhân đã cho có bao nhiêu số hạng?
Cho hình bình hành ABCD và O là giao điểm của AC và BD. Trên đường chéo AC lấy 2 điểm M và N sao cho AM = MN = NC
a) Chứng minh: tứ giác BMDN là hình bình hành.
b) BC cắt DN tại K. Chứng minh: N là trọng tâm của tam giác BDC.
Tìm các chữ số a, b để:
a) A = \(\overline {56a3b} \) chia hết cho 18;
b) B = \(\overline {71a1b} \) chia hết cho 45;
c) C = \(\overline {6a14b} \) chia hết cho 2; 3; 5; 9;
d) D = \(\overline {25a1b} \) chia hết cho 15 nhưng không chia hết cho 2.
An có 90 bút bi và 150 quyển vở muốn chia thành các phần thưởng để ủng hộ học sinh nghèo, sao cho số bút và vở trong các phần thưởng là như nhau. Hỏi An chia được bao nhiêu số phần thưởng trong khoảng từ 5 đến 30 phần thưởng?
Cho phương trình x2 + 2(m – 2)x + m2 – 4m = 0.
a) Giải phương trình khi m = 1.
b) Chứng minh rằng phương trình luôn có 2 nghiệm phân biệt với mọi giá trị của m.
Viết số có hai chữ số mà chữ số hàng chục bé hơn chữ số hàng đơn vị là 4.
Cho tam giác ABC vuông tại A, AB = 3cm, AC = 4cm. Tính độ dài BC. Tính góc B và góc C.