Cho ΔABC cố định, các điểm D và E di động trên các cạnh tương ứng là AB và AC sao cho . Chứng minh rằng: Trung điểm M của đoạn thẳng DE nằm trên 1 đoạn thẳng cố định.
Ta có:
Từ E kẻ đường thẳng song song với AB cắt BC tại F (EF // BC)
Theo định lý ta-lét ta có:
Suy ra:
Lại có: EF // AB nên EF // AD
Suy ra: ADFE là hình bình hành
Mà ADFE là hình bình hành có M là trung điểm của đường chéo DE nên M cũng là trung điểm của AF
Gọi I, J lần lượt là trung điểm AB, AC
Suy ra: IJ là đường trung bình của tam giác ABC
⇒ IJ // BC (1)
Tam giác ABF có I là trung điểm AB, M là trung điểm AF nên IM là đường trung bình của tam giác ABF
⇒ IM // BC (2)
Từ (1) và (2): I, M, J thẳng hàng
Vậy M nằm trên IJ
Mà tam giác ABC cố định, nên IJ cố định, vậy M cố định.
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Gọi M, N, P lần lượt là trung điểm của các đoạn BC, CD, SO. Tìm giao tuyến của (MNP) với các mặt phẳng (SAB), (SAD), (SBC) và (SCD).
Cho tam giác ABC cân tại A. Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. Các đường thẳng vuông góc với BC kẻ từ D và E cắt AB, AC lần lượt ở M, N.
a) Chứng minh rằng: DM = EN.
b) MN cắt BC tại I. Chứng minh I là trung điểm của MN.
Cho hình chóp S.ABCD có đáy ABCD là hình thang với AB là đáy lớn và AB = 2CD. Gọi M, N lần lượt là trung điểm của các cạnh SA và SB. Chứng minh rằng đường thẳng NC song song với đường thẳng MD.
Cho hình hộp chữ nhật ABCD.A'B'C'D' có AB = 1, BC = 2, AA' = 2. Khoảng cách giữa hai đường thẳng AD' và DC' bằng? (tham khảo hình)
Cho tam giác ABC có ba góc nhọn (AB < AC) nội tiếp đường tròn (O; R). Dựng đường tròn (K) đường kính BC cắt các cạnh AB, AC lần lượt tại các điểm F, E. Gọi H là giao điểm của BE và CF.
a) Chứng minh rằng AF.AB = AE.AC và AH vuông góc BC.
b) Chứng minh OA vuông góc EF.
Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a và , SA = SB = SC, góc giữa đường thẳng SA và mặt phẳng (ABC) bằng 60 độ.Tính thể tích V của khối chóp S.ABCD.
Cho hình thoi ABCD, gọi M, N, P, Q lần lượt là trung điểm của AB, BC, CD, DA. Chứng minh MNPQ là hình chữ nhật.
Cho khối chóp S.ABCD có đáy ABCD là hình bình hành, SA = SB = SC = AC = a, SB tạo với mặt phẳng (SAC) một góc 30°. Tính thể tích khối chóp.
Cho tam giác ABC có A(1;3), B(-1;-5), C(-4;-1). Viết phương trình đường cao AH của tam giác ABC.
Cho hình chóp S. ABC. Gọi M, N lần lượt là trung điểm của AC, BC, H, K lần lượt là trọng tâm của tam giác SAC, SBC.
a, Chứng mình AB// (SMK), HK// (SAB).
b, Tìm giao tuyến của hai mặt phẳng (CHK) và (ABC).
c, Tìm thiết diện của hình chóp với (P) đi qua MN và (P) // SC. Thiết diện là hình gì?
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi O là giao điểm của hai đường chéo AC và BD của hình bình hành ABCD.
a) Xác định giao tuyến của hai mặt phẳng (SBD) và (SAC).
b) Gọi K là trung điểm của SD. Tìm giao điểm G của BK với mặt phẳng (SAC); hãy cho biết tính chất của điểm G.