Thứ sáu, 22/11/2024
IMG-LOGO

Câu hỏi:

31/10/2024 4

Cho tứ diện \(OABC\) có \(OA,OB,OC\) đôi một vuông góc và \(OA = OB = 2a\), \(OC = a\sqrt 2 \). Khi đó vectơ \(\overrightarrow {AB} \left( {m;n;p} \right)\). Khi \(a = 1\) hãy tính giá trị của biểu thức \(T = m + n + p.\)

Cho tứ diện  O A B C  có  O A , O B , O C  đôi một vuông góc và  O A = O B = 2 a ,  O C = a √ 2 . Khi đó vectơ  −−→ A B ( m ; n ; p ) . Khi  a = 1  hãy tính giá trị của biểu thức  T = m + n + p . (ảnh 1)

A. \(2.\)

B. \( - 2.\)

C. \(0.\)

Đáp án chính xác

D. \(1.\)

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: C

Xét hệ trục \(Oxyz\) như sau, điểm \(O\) là gốc tọa độ \(OA \equiv Oz,OB \equiv Ox,OC \equiv Oy\).

Khi \(a = 1\), ta có \(O\left( {0;0;0} \right)\); \(A\left( {0;0;2} \right),B\left( {2;0;0} \right),C\left( {0;\sqrt 2 ;0} \right).\)

Lúc này, \(\overrightarrow {AB} = \left( {2;0; - 2} \right)\) nên \[m = 2,n = 0,p = - 2\].

Vậy \(T = m + n + p = 0.\)

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình vuông có các cạnh bằng 1, \(SAD\) là tam giác đều và nằm trong mặt phẳng với đáy. Gọi \(O\), \(M\) và \(N\) lần lượt là trung điểm của \(AD\), \(BC\) và \(CD\). Thiết lập hệ trục tọa độ \(Oxyz\) như hình vẽ.

Cho hình chóp  S . A B C D  có đáy  A B C D  là hình vuông có các cạnh bằng 1,  S A D  là tam giác đều và nằm trong mặt phẳng với đáy. Gọi  O ,  M  và  N  lần lượt là trung điểm của  A D ,  B C  và  C D . Thiết lập hệ trục tọa độ  O x y z  như hình vẽ. (ảnh 1)

a) Tọa độ các điểm \(A,B\) là \(A\left( {0; - \frac{1}{2};0} \right),B\left( {1; - \frac{1}{2};0} \right).\)

b) Tọa độ các điểm \(C,D\) là \(C\left( {1;\frac{1}{2};0} \right),D\left( {0;\frac{1}{2};0} \right).\)

c) Tọa độ điểm \(S\) là điểm \(S\left( {0;0;\frac{{\sqrt 3 }}{2}} \right).\)

d) Tọa độ các điểm \(M,N\) là \(M\left( {1;0;0} \right),N\left( {\frac{1}{2};\frac{1}{2};0} \right).\)

Khi đó, số mệnh đề đúng trong các mệnh đề là:

Xem đáp án » 31/10/2024 8

Câu 2:

Trong không gian với hệ trục \(Oxyz\), cho hai vectơ \(\overrightarrow u = \left( {1;2;3} \right)\) và \(\overrightarrow v = 2\overrightarrow i + a\overrightarrow j + 6\overrightarrow k \). Tìm giá trị của tham số a để \(\overrightarrow u = \frac{1}{2}\overrightarrow v \).

Xem đáp án » 31/10/2024 6

Câu 3:

I. Nhận biết

Trong không gian \(Oxyz\), hình chiếu vuông góc của điểm \(A\left( {3;4;1} \right)\) lên trục \(Ox\) có tọa độ là

Xem đáp án » 31/10/2024 5

Câu 4:

Trong không gian \(Oxyz\), cho \(\overrightarrow u = 2\overrightarrow i + \overrightarrow j - \overrightarrow k \). Tọa độ \(\overrightarrow u \) là

Xem đáp án » 31/10/2024 5

Câu 5:

Trong không gian \(Oxyz\), cho \(A\left( {2; - 1;0} \right)\) và \(B\left( {1;1; - 3} \right)\). Vectơ \(\overrightarrow {AB} \) có tọa độ là

Xem đáp án » 31/10/2024 5

Câu 6:

Trong không gian với hệ trục \(Oxyz\), cho hình bình hành \(ABCD\) có tâm \(I\) có tọa độ các đỉnh \(B\left( {3;1;0} \right)\), \(D\left( {0;4; - 6} \right)\). Tọa độ điểm \(I\) là

Xem đáp án » 31/10/2024 5

Câu 7:

Trong không gian với hệ trục \(Oxyz\), cho điểm \(M\left( {1;2;3} \right)\). Gọi \(H\) là hình chiếu vuông góc của \(M\) lên mặt phẳng \(\left( {Oxy} \right)\). Tọa độ của \(H'\) đối xứng với \(H\) qua mặt phẳng \(\left( {Oxz} \right)\) là

Xem đáp án » 31/10/2024 5

Câu 8:

III. Vận dụng

Trong không gian với hệ trục \(Oxyz\), cho ba điểm \(A\left( {1;1;1} \right)\), \(B\left( {5; - 1;2} \right)\), \(C\left( {3;2; - 4} \right)\). Tìm tọa độ điểm \(M\) thỏa mãn \(\overrightarrow {MA} + 2\overrightarrow {MB} - \overrightarrow {MC} = \overrightarrow 0 \).

Xem đáp án » 31/10/2024 5

Câu 9:

Trong không gian với hệ trục \(Oxyz\), cho hình hộp chữ nhật \(ABCD.A'B'C'D'\) có điểm \(A\) trùng với gốc tọa độ \(O\), điểm \(B\) nằm trên tia \(Ox\), điểm \(D\) nằm trên tia \(Oy\), điểm \(A'\) nằm trên tia \(Oz\). Biết \(AB = 2,AD = 4,AA' = 3\). Gọi tọa độ \(C'\) là \(\left( {a;b;c} \right)\) khi đó biểu thức \(a + b - c\) có giá trị là

Xem đáp án » 31/10/2024 5

Câu 10:

Trong không gian \(Oxyz\), hình chiếu vuông góc của điểm \(A\left( {2;3; - 1} \right)\) trên mặt phẳng \(\left( {Oxz} \right)\) có tọa độ là

Xem đáp án » 31/10/2024 4

Câu 11:

Trong không gian \(Oxyz\), cho \(I\left( {1;2;3} \right)\). Điểm đối xứng với \(A\) qua trục \(Oz\) có tọa độ là

Xem đáp án » 31/10/2024 4

Câu 12:

Trong không gian với hệ trục \(Oxyz\), cho điểm \(M\) thỏa mãn \(\overrightarrow {OM} = 3\overrightarrow i + 5\overrightarrow j - 7\overrightarrow k \). Tìm tọa độ của điểm đối xứng \(M'\) của \(M\) qua mặt phẳng \(\left( {Oxz} \right)\).

Xem đáp án » 31/10/2024 4

Câu 13:

Trong không gian với hệ trục \(Oxyz\), cho hình hộp \(ABCD.A'B'C'D'\). Biết \(A\left( {2;4;0} \right)\), \(B\left( {4;0;0} \right)\), \(C\left( { - 1;4; - 7} \right)\) và \(D'\left( {6;8;10} \right)\). Tìm tọa độ điểm \(B'\).

Xem đáp án » 31/10/2024 4

Câu 14:

Trong không gian với hệ trục \(Oxyz\), cho \(\overrightarrow a = \left( { - 3;2;1} \right)\) và điểm \(A\left( {4;6; - 3} \right)\). Tọa độ điểm \(B\) thỏa mãn \(\overrightarrow {AB} = \overrightarrow a \) là:

Xem đáp án » 31/10/2024 4

Câu 15:

Trong không gian \(Oxyz\), cho \(M\left( {8;4;3} \right)\). Khi đó:

a) Hình chiếu vuông góc của \(M\) trên trục \(Ox\) là điểm \(\left( {0;4;3} \right)\).

b) Hình chiếu vuông góc của \(M\) trên trục \(Oz\) là điểm \(\left( {0;0;3} \right)\).

c) Hình chiếu vuông góc của \(M\) trên trục \(Oxz\) là điểm \(\left( {8;0;3} \right)\).

d) \(\overrightarrow {OM} = 8\overrightarrow i + 4\overrightarrow j + 3\overrightarrow k .\)

Số mệnh đề đúng trong các mệnh đề trên là:

Xem đáp án » 31/10/2024 4

Câu hỏi mới nhất

Xem thêm »
Xem thêm »