Chủ nhật, 24/11/2024
IMG-LOGO

Câu hỏi:

03/11/2024 5

Một chất điểm đang chuyển động với vận tốc \[{v_0} = 15\] m/s thì tăng tốc với gia tốc \[a\left( t \right) = {t^2} + 4t\] (m/s2). Tính quãng đường vật đi được trong khoảng thời gian 3 giây kể từ lúc bắt đầu tăng tốc.

A. 70,5 m.

B. 58,25 m.

C. 67,25 m.

D. 69,75 m.

Đáp án chính xác

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: D

Ta có: \[a\left( t \right) = {t^2} + 4t\] suy ra \[v\left( t \right) = \int {a\left( t \right)dt} = \int {\left( {{t^2} + 4t} \right)} dt = \frac{{{t^3}}}{3} + 2{t^2} + C.\]

Mà \[{v_0} = 15\]m/s nên C = 15.

Do đó, \[v\left( t \right) = \frac{{{t^3}}}{3} + 2{t^2} + 15\].

Quãng đường vật đi được trong khoảng thời gian 3 giây kể từ lúc bắt đầu tăng tốc là

\[s\left( t \right) = \int\limits_0^3 {v\left( t \right)dt} = \int\limits_0^3 {\left( {\frac{{{t^3}}}{3} + 2{t^2} + 15} \right)} dt = 69,75\] m.

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho \[\int\limits_{ - 3}^0 {f\left( x \right)dx = - 4} \] và \[\int\limits_{ - 3}^0 {g\left( x \right)dx = - 3} \]. Xét các mệnh đề sau:

a) \[\int\limits_{ - 3}^0 {\left[ {f\left( x \right) + g\left( x \right)} \right]dx = - 7} .\]

b) \[\int\limits_{ - 3}^0 {\left[ {f\left( x \right) - g\left( x \right)} \right]dx = 1} .\]

c) \[\int\limits_{ - 3}^0 { - 3f\left( x \right)dx = 12} .\]

d) \[\int\limits_{ - 3}^0 {\left[ {f\left( x \right) + 3g\left( x \right)} \right]dx = - 51} .\]

Số mệnh đề đúng trong các mệnh đề trên là

Xem đáp án » 03/11/2024 10

Câu 2:

Cho \[f\left( x \right) = \left\{ \begin{array}{l}1,{\rm{ }}x \ge 1\\2x - 1,{\rm{ }}x < 1\end{array} \right.\]. Tính giá trị \[I = \int\limits_{ - 1}^2 {f\left( x \right)dx} \]

</>

Xem đáp án » 03/11/2024 7

Câu 3:

I. Nhận biết

Cho hàm số \[y = f\left( x \right)\] liên tục trên đoạn \[\left[ {a;b} \right]\]. Gọi \[F\left( x \right)\] là một nguyên hàm của hàm số \[f\left( x \right)\] trên đoạn \[\left[ {a;b} \right]\]. Chọn mệnh đề đúng.

Xem đáp án » 03/11/2024 6

Câu 4:

Tính tích phân \[\int\limits_0^1 {{e^{3x + 1}}dx} \] bằng

Xem đáp án » 03/11/2024 6

Câu 5:

Vận tốc của một vật chuyển động là \[v\left( t \right) = 3{t^2} + 5{\rm{ }}\left( {m/s} \right)\]. Quãng đường vật đó đi được từ giây thứ 4 đến giây thứ 10 là

Xem đáp án » 03/11/2024 6

Câu 6:

Cho hàm số \[y = f\left( x \right)\] liên tục trên đoạn \[\left[ {a;b} \right]\]. Gọi \[F\left( x \right)\] là một nguyên hàm của hàm số \[f\left( x \right)\] trên đoạn \[\left[ {a;b} \right]\]. Chọn mệnh đề sai.

Xem đáp án » 03/11/2024 5

Câu 7:

Cho hàm số \[y = f\left( x \right)\], \[y = g\left( x \right)\] liên tục trên \[\left[ {a;b} \right]\], \[k\] là hằng số. Xét các mệnh đề sau:

a) \[\int\limits_a^b {\left[ {f\left( x \right) + g\left( x \right)} \right]dx = \int\limits_a^b {f\left( x \right)dx + \int\limits_a^b {g\left( x \right)dx.} } } \]

b) \[\int\limits_a^b {f\left( x \right).g\left( x \right)dx = \int\limits_a^b {f\left( x \right)dx.\int\limits_a^b {g\left( x \right)dx.} } } \]

c) \[\int\limits_a^b {kf\left( x \right)dx = k\int\limits_a^b {f\left( x \right)dx} } .\]

d) \[\int\limits_a^b {\frac{{f\left( x \right)}}{{g\left( x \right)}}dx = \frac{{\int\limits_a^b {f\left( x \right)dx} }}{{\int\limits_a^b {g\left( x \right)dx} }}} .\]

Số mệnh đề đúng là

Xem đáp án » 03/11/2024 5

Câu 8:

Cho hàm số \[y = f\left( x \right)\] liên tục trên \[\mathbb{R}\] và \[a,b,c \in \mathbb{R}\] thỏa mãn \[a < b < c\]. Trong các mệnh đề dưới đây, mệnh đề đúng là

</>

Xem đáp án » 03/11/2024 5

Câu 9:

Giá trị \[\int\limits_0^{\frac{\pi }{2}} {\sin xdx} \] bằng

Xem đáp án » 03/11/2024 5

Câu 10:

Cho \[f\left( x \right),\] \[g\left( x \right)\] là hai hàm liên tục trên đoạn \[\left[ {1;3} \right]\] thỏa mãn \[\int\limits_1^3 {\left[ {f\left( x \right) + 3g\left( x \right)} \right]dx} = 10,\]\[\int\limits_1^3 {\left[ {2f\left( x \right) - g\left( x \right)} \right]dx} = 6.\] Tính giá trị \[I = \int\limits_1^3 {\left[ {f\left( x \right) + g\left( x \right)} \right]dx} \]

Xem đáp án » 03/11/2024 5

Câu 11:

Biết \[F\left( x \right) = {x^2}\] là một nguyên hàm của hàm số \[f\left( x \right)\]. Giá trị của \[\int\limits_1^3 {\left[ {1 + f\left( x \right)} \right]dx} \] bằng

Xem đáp án » 03/11/2024 5

Câu 12:

Biết \[\int\limits_{\frac{\pi }{3}}^{\frac{\pi }{2}} {\left( {2\sin x + 3\cos x + x} \right)dx = \frac{{a + b\sqrt 3 }}{2} + \frac{{5{\pi ^2}}}{c}} \] với \[\left( {a,b,c \in \mathbb{Z}} \right)\]. Khi đó giá trị của \[P = a + 2b + 3c\] là

Xem đáp án » 03/11/2024 5

Câu 13:

Cho hàm số \[f\left( x \right) = \left\{ \begin{array}{l}{x^2} - 1,{\rm{ }}x \ge 2\\{x^2} - 2x + 3,{\rm{ }}x < 2\end{array} \right.\]. Tính tích phân \[I = \frac{1}{2}\int\limits_1^3 {f\left( x \right)dx} \] bằng bao nhiêu?

</>

Xem đáp án » 03/11/2024 5

Câu 14:

Cho hàm số \[y = f\left( x \right)\] có đạo hàm \[f'\left( x \right)\] và \[f'\left( x \right)\] liên tục trên đoạn \[\left[ {a;b} \right]\]. Gọi \[F\left( x \right)\] là một nguyên hàm của hàm số \[f\left( x \right)\] trên đoạn \[\left[ {a;b} \right]\]. Chọn mệnh đề đúng.

Xem đáp án » 03/11/2024 4

Câu 15:

II. Thông hiểu

Tính \[I = \int\limits_{ - 1}^0 {{{\left( {2x + 3} \right)}^2}dx} \]

Xem đáp án » 03/11/2024 4

Câu hỏi mới nhất

Xem thêm »
Xem thêm »