Một tổ gồm 10 học sinh. Cần chia tổ đó thành ba nhóm có 5 học sinh, 3 học sinh và 2 học sinh. Số các chia nhóm là:
A. 2880
B. 2520
C. 2515
D. 2510
Chọn đáp án B
Một lớp có 15 học sinh nam và 20 học sinh nữ. Có bao nhiêu cách chọn 5 bạn học sinh sao cho trong đó có đúng 3 học sinh nữ?
Một túi đựng 6 bi trắng, 5 bi xanh. Lấy ra 4 viên bi từ túi đó. Hỏi có bao nhiêu cách lấy mà 4 viên bi lấy ra có đủ hai mà?
Một lớp học có 40 học sinh gồm 25 nam và 15 nữ. Chọn 3 học sinh để tham gia vệ sinh công cộng toàn trường, hỏi có bao nhiêu cách chọn như trên?
Cho X là biến ngẫu nhiên tuân theo phân phối đều rời rạc với n = 5. X∈{1,2,...,5}X∈{1,2,...,5}. Phương sai VX = ?
Cho X là biến ngẫu nhiên tuân theo luật phân phối đều liên tục X∼U([a;b]). Giá trị P(X∈[a−1;b+1]) bằng:
C.
D.
Trong một ban chấp hành đoàn gồm 7 người, cần chọn 3 người trong ban thường vụ. Nếu không có sự phân biệt về chức vụ của 3 người trong ban thường vụ thì có bao nhiêu các chọn?
Một cuộc thi có 15 người tham dự, giả thiết rằng không có hai người nào có điểm bằng nhau. Nếu kết quả cuộc thi và việc chọn ra 4 người có điểm cao nhất thì có bao nhiêu kết quả có thể xảy ra?
Một hộp đựng 5 viên bi màu xanh, 7 viên bi màu vàng. Có bao nhiêu cách lấy ra 6 viên bi bất kỳ?
Biến ngẫu nhiên X tuân theo luật phân phối nhị thức: X∼B(n,p).P(X=x), với 0≤x≤n, bằng:
Có 15 đội bóng đá thi đấu theo thể thức vòng tròn tính điểm. Hỏi cần phải tổ chức bao nhiêu trận đấu?
Có bao nhiêu cách cắm 3 bông hoa giống nhau vào 5 lọ khác nhau (mỗi lọ cắm không quá một bông)?
Cho 10 điểm, không có 3 điểm nào thẳng hàng. Hỏi có bao nhiêu đường thẳng khác nhau tạo bởi 2 trong 10 điểm nói trên?
Trong mặt phẳng, cho 6 điểm phân biệt sao cho không có ba điểm nào thẳng hàng. Hỏi có thể lập được bao nhiêu tam giác mà các đỉnh của nó thuộc tập điểm đã cho?