Đồ thị hàm số y = |x| có dạng hình vẽ.
Có bao nhiêu mệnh đề đúng trong các phát biểu sau?
1. Hàm số không có đạo hàm tại x = 0.
2. Hàm số không liên tục tại x = 0.
3. Hàm số không có cực trị tại x = 0.
4. Hàm số đạt cực trị tại x = 0.
A. 0
B. 1
C. 2
D. 3
Đồ thị hàm số y = |x| có dạng hình vẽ.
Từ đồ thị trong hình ta có hàm số y = |x| liên tục tại x = 0 nhưng không có đạo hàm tại điểm đó.
Sử dụng định nghĩa cực trị ta có hàm số y = |x| đạt cực tiểu tại x = 0
Do đó mệnh đề 1 và 4 đúng.
Chọn đáp án C
Cho hàm số y = f(x) có đồ thị như hình vẽ. Điểm cực đại của đồ thị hàm số là
Cho hàm số Phương trình đường thẳng đi qua hai điểm cực trị của đồ thị hàm số trên là:
Tìm tất cả các giá trị của tham số m để hàm số đạt cực đại tại x = 1.
Tìm a, b, c sao cho hàm số có giá trị bằng 0 khi x = 1 và đạt cực trị khi bằng 0 khi x = -1 .
Cho hàm số y = f(x) xác định, liên tục trên R và có bảng biến thiên
Mệnh đề nào sau đây là đúng?
Cho hàm số (C). Phương trình đường thẳng đi qua hai điểm cực trị của đồ thị hàm số (C) là:
Cho hàm số (1) và các mệnh đề
(1) Điểm cực trị của hàm số (1) là x = 0 hoặc x = 4/3
(2) Điểm cực trị của hàm số (1) là x = 0 và x = 4/3
(3) Điểm cực trị của đồ thị hàm số (1) là x = 0 và x = 4/3
(4) Cực trị của hàm số (1) là x = 0 và x = 4/3
Trong các mệnh đề trên, số mệnh đề sai là:
Với giá trị nào của m, đường thẳng đi qua hai điểm cực trị của đồ thị hàm số tạo với đường thẳng Δ: 3x + y - 8 = 0 một góc ?
Với giá trị nào của m, đồ thị hàm số có hai điểm cực trị B, C thẳng hàng với điểm A(-1;3)?