Cho tam giác ABC vuông tại A, tia phân giác của (ABC) cắt AC tại D. Kẻ DE ⊥ BC (E ∈ BC). Gọi F là giao điểm của BA và ED. Chứng minh:
a. ∆ABD = ∆EBD
a. Hình vẽ (0.5 điểm)
Xét ∆ABD và ∆EBD có:
∠(ABD) = ∠(DBE)
BD là cạnh chung
⇒ ∆ABD = ∆EBD(cạnh huyền – góc nhọn) (1 điểm)
Cho tam giác ABC có Tia AD là tia phân giác của góc (BAC) (D ∈ BC). Khi đó số đo của góc (ADB) là:
Cho tam giác ABC vuông tại A, tia phân giác của (ABC) cắt AC tại D. Kẻ DE ⊥ BC (E ∈ BC). Gọi F là giao điểm của BA và ED. Chứng minh:
c. DF = DC
A. Phần trắc nghiệm (3 điểm)
Trong mỗi câu dưới đây, hãy chọn phương án trả lời đúng:
Bộ ba số nào sau đây không thể là độ dài ba cạnh của một tam giác?
B. Phần tự luận (7 điểm)
Cho tam giác ABC vuông tại A có AB = 6cm, AC = 8cm.
a. Tính độ dài cạnh BC
Cho tam giác ABC vuông tại A, tia phân giác của (ABC) cắt AC tại D. Kẻ DE ⊥ BC (E ∈ BC). Gọi F là giao điểm của BA và ED. Chứng minh:
b. BD là đường trung trực của AE
Cho tam giác ABC vuông tại A có AB = 6cm, AC = 8cm.
b. So sánh các góc của tam giác ABC
Cho tam giác ABC vuông tại A, tia phân giác của (ABC) cắt AC tại D. Kẻ DE ⊥ BC (E ∈ BC). Gọi F là giao điểm của BA và ED. Chứng minh:
d. AD < DC
Tam giác ABC có độ dài hai cạnh là BC = 1cm, AC = 8cm. Tìm AB biết độ dài cạnh AB là một số nguyên.