Cho tam giác ABC vuông tại A (AB < AC), tia phân giác BM (M ∈ AC). Vẽ MK vuông góc với BC tại K. gọi N là giao điểm của MK và AB. Chứng minh:
b. MN = MC
b. Xét ΔAMF và ΔKMC có:
AM = MK
∠(AMN) = ∠(KMC) (hai góc đối đỉnh)
⇒ ΔAMF = ΔKMC ( cạnh góc vuông – góc nhọn kề) (0.5 điểm)
⇒ MN = MC (hai cạnh tương ứng) (0.5 điểm)
Cho tam giác ABC, M là trung điểm của AC, G là trọng tâm của tam giác ABC và GM = 5cm. Độ dài đoạn BG là:
Cho tam giác ABC vuông tại A (AB < AC), tia phân giác BM (M ∈ AC). Vẽ MK vuông góc với BC tại K. gọi N là giao điểm của MK và AB. Chứng minh:
d. BM vuông góc với NC
B. Phần tự luận (7 điểm)
Cho tam giác ABC vuông tại A có
a. So sánh AB và AC
A. Phần trắc nghiệm (3 điểm)
Trong mỗi câu dưới đây, hãy chọn phương án trả lời đúng:
Trọng tâm của tam giác là:
Cho tam giác ABC vuông tại A (AB < AC), tia phân giác BM (M ∈ AC). Vẽ MK vuông góc với BC tại K. gọi N là giao điểm của MK và AB. Chứng minh:
a. BM là đường trung trực của AK
Cho tam giác ABC vuông tại A (AB < AC), tia phân giác BM (M ∈ AC). Vẽ MK vuông góc với BC tại K. gọi N là giao điểm của MK và AB. Chứng minh:
c. AM < MC
Cho tam giác ABC vuông tại A có
b. Vẽ đường cao AH. Chứng minh HC > HB