Số học sinh khối 6 của môt trường THCS khi xếp hàng 2, hàng 3, hàng 4, hàng 5 đều thiếu 1 bạn, nhưng xếp hàng 7 thì vừa đủ. Tính số học sinh của khối 6 của trường đó. Biết số học sinh nhỏ hơn 300
Gọi số học sinh khối 6 của trường đó là a (a ∈ N*; a < 300).
Theo đề bài ta có: a + 1 ⋮ 2 , a + 1 ⋮ 3 , a + 1 ⋮ 4 , a + 1 ⋮ 5; a ⋮ 7
Do đó: a + 1 là BC ( 2 ; 3 ; 4 ; 5 )
BCNN ( 2 ; 3 ; 4 ; 5 ) = 60
BC ( 2 ; 3 ; 4 ; 5 ) = B (60) = { 0; 60; 120; 180; 240; 300; 360; … }
⇒ a + 1 ∈ { 60; 120; 180; 240; 300; 360; … }
Vì a ∈ N* nên a ∈ { 59; 119; 179; 239; 299; 359; … }
Vì a < 300 nên a ∈ { 59; 119; 179; 239; 299 }
Mà a ⋮ 7 nên a = 119.
Vậy số học sinh khối 6 của trường đó là 119 học sinh.
Tìm các chữ số a, b sao cho chia hết cho cả 5, 9 và không chia hết cho 2.
Trên tia Ox cho các điểm A, B sao cho OA = 3 cm, OB = 9 cm.
a) Tính độ dài đoạn thẳng AB
Trên tia Ox cho các điểm A, B sao cho OA = 3 cm, OB = 9 cm.
b) Cho điểm C nằm giữa A và B. Gọi M, N lần lượt là trung điểm của đoạn thẳng AC, CB. Tính đọ dài đoạn thẳng MN.