Cho hai hàm số và . Tổng tất cả các giá trị nguyên của tham số m để hai đồ thị hàm số cắt nhau tại một điểm duy nhất bằng:
A. 506
B. 1011
C. 2020
D. 1010
ĐKXĐ:
Xét phương trình hoành độ giao điểm:
Đặt
Ta có:
BBT:
Dựa vào BBT ta thấy dể phương trình có nghiệm duy nhất thì:
Vậy tổng các giá trị của m thỏa mãn yêu cầu bài toán là: 505+506=1011
Đáp án cần chọn là: B.
Cho hai hàm số với lần lượt có đồ thị là như hình bên. Mệnh đề nào đúng?
Cho hai hàm số và . Xét các mệnh đề sau:
Đồ thị của hai hàm số f (x) và g (x) luôn cắt nhau tại một điểm.
Hàm số f(x)+g(x) đồng biến khi a > 1, nghịch biến khi 0<a<1
Đồ thị hàm số f (x) nhận trục Oy làm tiệm cận.
Chỉ có đồ thị hàm số f (x) có tiệm cận.
Hỏi có tất cả bao nhiêu mệnh đề đúng?
Cho a, b, c là các số thực dương khác 1. Hình vẽ bên là đồ thị của ba hàm số . Khẳng định nào sau đây là đúng?