Vào ngày thứ Bảy, cô Lan tổ chức cho học sinh đi tham quan Bảo tàng Dân tộc học. Các học sinh đóng tiền mua vé, mỗi em một vé. Số tiền cô Lan thu được từng ngày được ghi lại ở bảng bên.
a) Hỏi số tiền để mua một vé (giá vé được tính theo đơn vị nghìn đồng) có thể là bao nhiêu, biết giá vé lớn hơn 2000 đồng?
b) Có bao nhiêu học sinh tham gia chuyến đi, biết số học sinh trong lớp khoảng từ 20 đến 40 người.
Ngày | Số tiền đóng (đồng) |
Thứ hai | 56 000 |
Thứ Ba | 28 000 |
Thứ Tư | 42 000 |
Thứ Năm | 98 000 |
a) Vì mỗi em mua một vé nên giá vé tính theo nghìn đồng chính là
ƯC(56 000; 28 000; 42 000; 98 000)
Ta có: 56 000 =
28 000 =
42 000 =
98 000 =
Ta thấy 2; 5 và 7 là các thừa số nguyên tố chung của 56 000; 28 000; 42 000; 98 000. Số mũ nhỏ nhất của 2 là 4, số mũ nhỏ nhất của 5 là 3, số mũ nhỏ nhất của 7 là 1 nên
ƯCLN (56 000; 28 000; 42 000; 98 000) = 24.53.7 = 14 000
ƯC(56 000; 28 000; 42 000; 98 000) = Ư(14 000)
Do giá vé tính theo đơn vị nghìn đồng nên giá vé chỉ có thể là: 1 000; 2 000; 7 000 đồng.
Mà giá vé lớn hơn 2000 đồng nên giá vé là 7 000 đồng.
b) Tổng số tiền cô Lan thu được thừ thứ Hai đến thứ Năm là:
56 000 + 28 000 + 42 000 + 98 000 = 224 000 (đồng)
Số học sinh tham gia chuyến đi là:
224 000 : 7 000 = 32 (học sinh)
Vậy giá vé là 7 000 đồng và có 32 học sinh tham gia chuyến đi.
Cho tập Ư(8) = {1; 2; 4; 8} và Ư(20) = {1; 2; 4; 5; 10; 20}. Tập hợp ƯC(8; 20) là:
Sắp xếp các bước tìm ƯCLN của hai hay nhiều số lớn hơn 1 là:
1 – Chọn ra các thừa số nguyên tố chung.
2 – Lập tích các thừa số đã chọn, mỗi thừa số lấy với số mũ nhỏ nhất. Tích đó là ƯCLN phải tìm.
3 – Phân tích mỗi số ra thừa số nguyên tố.
Cho các phân số sau: . Có bao nhiêu phân số tối giản trong các phân số trên.
Nếu 9 là số lớn nhất sao cho và thì 9 là ………… của a và b. Chọn câu trả lời đúng nhất.
Tuần này lớp 6A và 6B gồm 40 học sinh nữ và 36 học sinh nam được phân công đi thu gom rác làm sạch bờ biển ở địa phương. Nếu chia nhóm sao cho số học sinh nam và nữ trong các nhóm bằng nhau thì:
a) Có thể chia được thành bao nhiêu nhóm học sinh?
b) Có thể chia nhiều nhất bao nhiêu nhóm học sinh?
Muốn tìm tập hợp ước chung chung của hai hay nhiều số tự nhiên, ta thực hiện: