Thay dấu * để được số nguyên tố \[\overline {3*} \]:
A. 7
B. 4
C. 6
D. 9
Đáp án A: Vì 37 chỉ chia hết cho 1 và 37 nên 37 là số nguyên tố, do đó chọn A.
Đáp án B: 34 không phải là số nguyên tố (34 chia hết cho {2; 4;…}). Do đó loại B.
Đáp án C: 36 không phải là số nguyên tố (36 chia hết cho {1; 2; 3;...; 36}). Do đó loại C.
Đáp án D: 39 không phải là số nguyên tố (39 chia hết cho {1; 3;...; 39}). Do đó loại D.
Đáp án cần chọn là: A
Phân tích số a ra thừa số nguyên tố \[a = p_1^{{m_1}}.p_2^{{m_2}}...p_k^{{m_k}}\]. Khẳng định nào sau đây là đúng: