Cho lăng trụ đứng ABC.A’B’C’ có đáy là tam giác đều cạnh a. Mặt phẳng (AB'C') tạo với mặt đáy góc 600. Tính theo a thể tích lăng trụ ABC.A’B’C’
Đáp án A
Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O cạnh a, SO vuông góc với mặt phẳng (ABCD) và SO=a. Khoảng cách giữa SC và AB bằng
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật AB=2a, AD=a. Hình chiếu của S lên đáy là trung điểm H của cạnh AB, góc tạo bởi SC và đáy bằng 450. Tính thể tích khối chóp S.ABCD
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật tâm O, AB=a, BC=a√2. Tam giác SAO cân tại S, mặt phẳng (SAD) vuông góc với mặt phẳng (ABCD) góc giữa đường thẳng SD và mặt phẳng (ABCD) bằng 600. Tính khoảng cách giữa 2 đường thẳng SB và AC
Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a và . Hình chiếu vuông góc của S trên mặt phẳng (ABCD) trùng với trọng tâm của tam giác ABC. Góc giữa mặt phẳng (SAB) và (ABCD) bằng . Khoẳng cách từ điểm B đến mặt phẳng (SCD) bằng
Cho hình chóp S.ABCD có đáy ABCD là hình vuông, cạnh bên SA vuông góc với mặt phẳng đáy. Đường thẳng SD tạo với mặt phẳng (SAB) một góc 45°. Gọi I là trung điểm của cạnh CD. Góc giữa hai đường thẳng BI và SD bằng (Số đo góc được làm tròn đến hàng đơn vị).
Cho khối trụ có thể tích bằng 24. Hỏi nếu tăng bán kính đường tròn đáy của khối trụ lên 2 lần thì thể tích của khối trụ mới là bao nhiêu ?
Một khối lập phương có độ dài cạnh là 2cm được chia thành 8 khối lập phương cạnh 1cm. Hỏi có bao nhiêu tam giác được tạo thành từ các đỉnh của khối lập phương cạnh 1cm
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA=a và SA vuông góc với đáy. Gọi M là trung điểm SB, N là điểm thuộc cạnh SD sao cho SN=2ND. Tính thể tích V của khối tứ diện ACMN.
Cho khối lăng trụ ABCD.A’B’C’D’ có thể tích bằng 12, đáy ABCD là hình vuông tâm O. Thể tích khối chóp A’.BCO bằng
Cho hình chóp S.ABCD có đáy là hình bình hành, cạnh bên SA vuông góc với đáy. Biết khoảng cách từ A đến (SBD) bằng . Tính khoảng cách từ C đến mặt phẳng (SBD)?
Cho S.ABCD có đáy ABCD là hình vuông cạnh a. Biết và . Tính thể tích V của khối chóp S.ABCD.
Cho hình hộp ABCD.A'B'C'D', AB=6cm, BC=BB'=2cm. Điểm E là trung điểm cạnh BC. Một tứ diện đều MNPQ có hai đỉnh M và N nằm trên đường thẳng C E′, hai đỉnh P, Q nằm trên đường thẳng đi qua điểm B′ và cắt đường thẳng AD tại điểm F. Khoảng cách DF bằng
Cho hình thang ABCD vuông tại A và B với AB=BC=. Quay hình thang và miền trong của nó quanh đường thẳng chứa cạnh BC. Tính thể tích V của khối tròn xoay được tạo thành.