Cho \({x_1}\) là giá trị thỏa mãn \[\frac{1}{2} - (\frac{2}{3}x - \frac{1}{3}) = \frac{{ - 2}}{3}\] và \({x_2}\) là giá trị thỏa mãn \[\,\frac{5}{6} - x = \frac{{ - 1}}{{12}} + \frac{4}{3}\] . Khi đó \({x_1} + {x_2}\) bằng
A. \[\frac{8}{3}\]
B. \[\frac{{ - 5}}{{12}}\]
C. \[\frac{9}{4}\]
D. \[\frac{{11}}{6}\]
\[\begin{array}{*{20}{l}}{ + )\,\,\frac{1}{2} - \left( {\frac{2}{3}x - \frac{1}{3}} \right) = \frac{{ - 2}}{3}}\\{\frac{2}{3}x - \frac{1}{3} = \frac{1}{2} - \left( {\frac{{ - 2}}{3}} \right)}\\{\frac{2}{3}x - \frac{1}{3} = \frac{7}{6}}\\{\frac{2}{3}x = \frac{7}{6} + \frac{1}{3}}\\{\frac{2}{3}x = \frac{3}{2}}\\{x = \frac{3}{2}:\frac{2}{3}}\\{x = \frac{9}{4}.}\end{array}\]
Nên \[{x_1} = \frac{9}{4}\]
\[\begin{array}{*{20}{l}}{ + )\,\,\frac{5}{6} - x = \frac{{ - 1}}{{12}} + \frac{4}{3}}\\{\frac{5}{6} - x = \frac{5}{4}}\\{x = \frac{5}{6} - \frac{5}{4}}\\{x = \frac{{ - 5}}{{12}}.}\end{array}\]
Nên \[{x_2} = - \frac{5}{{12}}\]
Từ đó \[{x_1} + {x_2} = \frac{9}{4} + \left( { - \frac{5}{{12}}} \right) = \frac{{11}}{6}\]
Đáp án cần chọn là: D
Sắp xếp các phân số sau: \[\frac{1}{3};\frac{1}{2};\frac{3}{8};\frac{6}{7}\] theo thứ tự từ lớn đến bé.
Tính nhanh \[A = \frac{5}{{1.3}} + \frac{5}{{3.5}} + \frac{5}{{5.7}} + ... + \frac{5}{{99.101}}\]
Cho \[A = \frac{{\left( {3\frac{2}{{15}} + \frac{1}{5}} \right):2\frac{1}{2}}}{{\left( {5\frac{3}{7} - 2\frac{1}{4}} \right):4\frac{{43}}{{56}}}}\] và \[B = \frac{{1,2:\left( {1\frac{1}{5}.1\frac{1}{4}} \right)}}{{0,32 + \frac{2}{{25}}}}\] . Chọn đáp án đúng.
Cho phân số \[A = \frac{{n - 5}}{{n + 1}}\,\,\left( {n \in Z;n \ne - 1} \right)\] dụng
Tìm điều kiện của n để A là phân số tối giản.
Cho hai biểu thức \[B = \,\,\left( {\frac{2}{3} - 1\frac{1}{2}} \right):\frac{4}{3} + \frac{1}{2}\] và \[C = \,\frac{9}{{23}}.\frac{5}{8} + \frac{9}{{23}}.\frac{3}{8} - \frac{9}{{23}}\] . Chọn câu đúng
Cho x là giá trị thỏa mãn \[\,\,\,\,\,\frac{6}{7}x - \frac{1}{2} = 1\]
Tìm một phân số ở giữa hai phân số \(\frac{1}{{10}}\) và \(\frac{2}{{10}}\) .
Rút gọn phân số \[\;\frac{{1978.1979 + 1980.21 + 1958}}{{1980.1979 - 1978.1979}}\] ta được kết quả là:
Cho phân số \[A = \frac{{n - 5}}{{n + 1}}\,\,\left( {n \in Z;n \ne - 1} \right)\] dụng
Có bao nhiêu giá trị nguyên của nn để A có giá trị nguyên.