Cho hình lập phương ABCD.A'B'C'D' cạnh 2a, gọi M là trung điểm của BB' và P thuộc cạnh sao cho . Mặt phẳng (AMP) cắt CC' tại N. Thể tích khối đa diện AMNPBCD bằng
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Gọi M, N lần lượt là trung điểm của các cạnh AB, AD; H là giao điểm của CN với DM. Biết SH vuông góc với mặt phẳng (ABCD) và SH=. Tính khoảng cách giữa hai đường thẳng DM và SC theo a.
Cho hình trụ có bán kính đáy bằng R và chiều cao bằng . Mặt phẳng () song song với trục của hình trụ và cách trục một khoảng bằng . Diện tích thiết diện của hình trụ cắt bởi mặt phẳng là:
Cho hàm số S.ABCD có đáy ABCD là hình vuông cạnh a, cạnh bên SA=2a và vuông góc với mặt phẳng đáy. Gọi M là trung điểm cạnh SD. Tang của góc tạo bởi hai mặt phẳng (AMC) và (SBC) bằng
Cho hình chóp tứ giác đều S.ABCD có tất cả các cạnh bằng a. Khoảng cách giữa hai đường thẳng AC và SB là
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, cạnh AB=a, AD=a. Cạnh bên SA=a và vuông góc với mặt phẳng đáy. Góc giữa đường thẳng SB và mặt phẳng (SAC)
Cho tứ diện ABCD biết AB=BC=CA=4, AD=5, CD=6, BD=7. Góc giữa hai đường thẳng AB và CD bằng
Cho hình chóp S.ABCD có đáy là hình vuông cạnh 2a, hình chiếu của S lên mặt đáy trùng với điểm H thỏa mãn . Gọi M và N lần lượt là hình chiếu vuông góc của H trên các cạnh AB và AD. Tính khoảng cách giữa hai đường thẳng MN và SC biết .
Khi quay một hình chữ nhật và các điểm trong của nó quanh trục là một đường trung bình của hình chữ nhật đó, ta nhận được hình gì?
Tính diện tích toàn phần của hình lập phương có độ dài đường chéo bằng .
Cho hình nón có bán kính đáy bằng 6, chiều cao bằng 8. Biết rằng có một mặt cầu tiếp xúc với tất cả các đường sịnh của hình nón, đồng thời tiếp xúc với mặt đáy của hình nón. Tính bán kính mặt cầu đó.
Cho khối chóp S.ABC có SA vuông góc với mặt phẳng (ABC) và SA=a. Đáy ABC thỏa mãn (tham khảo hình vẽ). Tìm số đo góc giữa đường thẳng SB và mặt phẳng (ABC)
Cho hình lăng trụ đứng có đáy ABC là tam giác vuông tại B, AB= 4, BC=6; chiều cao của lăng trụ bằng 10. Gọi K, M, N lần lượt là trung điểm của các cạnh . Thể tích của khối tứ diện là
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, SA=2, SB=6, SC=9. Độ dài cạnh SD là
Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a. Gọi M và N lần lượt là trung điểm của SA và CD. Cho biết MN tạo với mặt đáy một góc bằng . Tính thể tích khối chóp S.ABCD .
Hai chiếc ly đựng chất lỏng giống hệt nhau, mỗi chiếc có phần chứa chất lỏng là một khối nón có chiều cao 2 dm (mô tả như hình vẽ). Ban đầu chiếc ly thứ nhất chứa đầy chất lỏng, chiếc ly thứ hai để rỗng. Người ta chuyển chất lỏng từ ly thứ nhất sang ly thứ hai sao cho độ cao của cột chất lỏng trong ly thứ nhất còn 1dm. Tính chiều cao h của cột chất lỏng trong ly thứ hai sau khi chuyển (độ cao của cột chất lỏng tính từ đỉnh của khối nón đến mặt chất lỏng - lượng chất lỏng coi như không hao hụt khi chuyển. Tính gần đúng h với sai số không quá 0,01dm)