Trong các số \(\frac{2}{{11}};\,\,0,232323...;\,\,0,20022...;\,\,\sqrt {\frac{1}{4}} \) , số vô tỉ?
A. \(\frac{2}{{11}}\);
B. 0,232323…;
C.0,20022…;
D. \(\sqrt {\frac{1}{4}} \).
Đáp án đúng là: C
Ta có
\(\frac{2}{{11}} = 0,\left( {18} \right)\). Vậy \(\frac{2}{{11}}\) là số thập phân vô hạn tuần hoàn nên \(\frac{2}{{11}}\) là số hữu tỉ không phải là số vô tỉ.
Số 0,232323… là số thập phân vô hạn tuần hoàn nên 0,232323… là số hữu tỉ không phải số vô tỉ.
0,20022… là số thập phân vô hạn không tuần hoàn nên 0,20022… là số vô tỉ.
\(\sqrt {\frac{1}{4}} = \frac{1}{2} = 0,5\). Vì \(\sqrt {\frac{1}{4}} \) là số thập phân hữu hạn nên \(\sqrt {\frac{1}{4}} \) là số hữu tỉ không phải là số vô tỉ.
Vậy chọn đáp án C.
Biểu thức \(\frac{{\sqrt {{{23}^2}} + \sqrt {{{12}^2}} }}{{\sqrt {{{13}^2}} + \sqrt 4 }}\) sau khi rút gọn sẽ bằng:
Tìm x nguyên để \[A = \frac{{35 - \sqrt x }}{{\sqrt 9 + 2}}\] có giá trị nguyên biết x < 30?
</>