Trắc nghiệm Toán học 7 Bài 1. Số vô tỉ. Căn bậc hai số học có đáp án
-
322 lượt thi
-
13 câu hỏi
-
30 phút
Danh sách câu hỏi
Câu 1:
Chọn đáp án đúng:
Đáp án đúng là: B
Mỗi số hữu tỉ được biểu diễn bởi một số thập phân hữu hạn hoặc vô hạn tuần hoàn.
Do đó, đáp án A và C sai.
Mỗi số vô tỉ được biểu diễn bởi một số thập phân vô hạn không tuần hoàn.
Do đó, đáp án B đúng.
Số vô tỉ là số thập phân vô hạn không tuần hoàn, tập hợp số vô tỉ được kí hiệu I.
Do đó, đáp án D sai.
Vậy chọn đáp án B.
Câu 2:
Trong các số \(\frac{2}{{11}};\,\,0,232323...;\,\,0,20022...;\,\,\sqrt {\frac{1}{4}} \) , số vô tỉ?
Đáp án đúng là: C
Ta có
\(\frac{2}{{11}} = 0,\left( {18} \right)\). Vậy \(\frac{2}{{11}}\) là số thập phân vô hạn tuần hoàn nên \(\frac{2}{{11}}\) là số hữu tỉ không phải là số vô tỉ.
Số 0,232323… là số thập phân vô hạn tuần hoàn nên 0,232323… là số hữu tỉ không phải số vô tỉ.
0,20022… là số thập phân vô hạn không tuần hoàn nên 0,20022… là số vô tỉ.
\(\sqrt {\frac{1}{4}} = \frac{1}{2} = 0,5\). Vì \(\sqrt {\frac{1}{4}} \) là số thập phân hữu hạn nên \(\sqrt {\frac{1}{4}} \) là số hữu tỉ không phải là số vô tỉ.
Vậy chọn đáp án C.
Câu 3:
Khẳng định nào sau đây sai?
Đáp án đúng là: C
Ta có
\(\sqrt {0,36} = 0,6\) nên đáp án A đúng.
\(\sqrt {{{\left( { - 6} \right)}^2}} = \sqrt {36} = 6\) nên đáp án B đúng.
Sử dụng máy tính cầm tay ta có \(\sqrt {150} \)= 12,247…; \(\sqrt {100} \)+ \(\sqrt {50} \)=17,071…
Vì 12,247… 17,071… nên \(\sqrt {150} \) \(\sqrt {100} \)+ \(\sqrt {50} \). Do đó, đáp án C sai.
\[\sqrt {\frac{{81}}{{225}}} = \frac{9}{{15}} = \frac{3}{5}\] nên đáp án D đúng.
Vậy chọn đáp án C.
Câu 4:
Chọn phát biểu đúng trong các các phát biểu sau:
Đáp án đúng là: D
Ta có
\[\sqrt 3 = 1,732...\]. Vì \[\sqrt 3 \] là số thập phân vô hạn không tuần hoàn nên \[\sqrt 3 \] là số vô tỉ suy ra\[\sqrt 3 \notin \mathbb{N}\]. Do đó, đáp án A sai.
\[\sqrt {16} = 4\]. Vì \[\sqrt {16} \]đưa được về dạng số thập phân hữu hạn nên \[\sqrt {16} \]là số hữu tỉ suy ra\[\sqrt {16} \notin I\]. Do đó, đáp án B sai.
\[\pi = 3,14...\]. Vì \[\pi \] là số thập phân vô hạn không tuần hoàn nên \[\pi \] là số vô tỉ suy ra \[\pi \notin \mathbb{Z}\]. Do đó, đáp án C sai.
\[\sqrt {81} = 9\]. Vì \[\sqrt {81} \] đưa được về dạng số thập phân hữu hạn nên \[\sqrt {81} \] là số hữu tỉ nên \[\sqrt {81} \in \mathbb{Q}\]. Do đó, đáp án D đúng.
Vậy chọn đáp án D.
Câu 5:
Tìm x nguyên để \[A = \frac{{35 - \sqrt x }}{{\sqrt 9 + 2}}\] có giá trị nguyên biết x < 30?
</>
Đáp án đúng là: D
Ta có \[A = \frac{{35 - \sqrt x }}{{\sqrt 9 + 2}} = \frac{{35 - \sqrt x }}{{3 + 2}} = \frac{{35 - \sqrt x }}{5}\].
Để A nhận giá trị nguyên thì \[(35 - \sqrt x )\,\, \vdots \,\,5\].
Mà 35 ⋮ 5 nên \[\sqrt x \,\, \vdots \,\,5\]
Mặt khác, x < 30 nên x = 25.
Vậy chọn đáp án D.
Câu 6:
Số − 9 có mấy căn bậc hai?
Đáp án đúng là: A
Số âm không có căn bậc hai nên số − 9 không có căn bậc hai.
Vậy chọn đáp án A.
Câu 7:
Căn bậc hai không âm của 0,64 là:
Đáp án đúng là: A
Ta có: 0,64 có hai căn bậc hai là \[\sqrt {0,64} = 0,8\] và \[ - \sqrt {0,64} = - 0,8\].
Do đó căn bậc hai không âm của 0,64 là 0,8.
Vậy chọn đáp án A.
Câu 8:
Chọn câu trả lời sai. Nếu \[\sqrt x = \frac{5}{2}\] thì x bằng:
Đáp án đúng là: B
Ta có \[\sqrt x = \frac{5}{2}\] suy ra\[x = {\left( {\frac{5}{2}} \right)^2} = \frac{{25}}{4}\] nên đáp án D đúng.
\[{\left[ {\frac{{ - \left( { - 5} \right)}}{2}} \right]^2} = {\left( {\frac{5}{2}} \right)^2}\]nên đáp án A đúng.
\[{\left[ { - \left( { - \frac{5}{2}} \right)} \right]^2} = {\left( {\frac{5}{2}} \right)^2}\]nên đáp C đúng.
\[\left[ { - {{\left( { - \frac{5}{2}} \right)}^2}} \right] = - \frac{{25}}{4}\] ≠ \[\frac{{25}}{4}\] nên đáp án B sai.
Vậy chọn đáp án B.
Câu 9:
Độ dài cạnh của một mảnh đất hình vuông có diện tích 256 m2 là:
Đáp án đúng là: D
Độ dài cạnh của mảnh đất hình vuông đó là: \(\sqrt {256} = 16\) (m).
Vậy chọn đáp án D.
Câu 10:
So sánh \(\sqrt {36} + \sqrt {64} \)và \( - \sqrt 5 \) :
Đáp án đúng là: B
Ta có:
\(\sqrt {36} + \sqrt {64} = 6 + 8 = 14\); \(\sqrt {36 + 64} = \sqrt {100} = 10\)
Mà 14 > 10 nên \(\sqrt {36} + \sqrt {64} \) > \(\sqrt {64 + 36} \).
Vậy chọn đáp án B.
Câu 11:
Biểu thức \(\frac{{\sqrt {{{23}^2}} + \sqrt {{{12}^2}} }}{{\sqrt {{{13}^2}} + \sqrt 4 }}\) sau khi rút gọn sẽ bằng:
Đáp án đúng là: D
Ta có: \(\frac{{\sqrt {{{23}^2}} + \sqrt {{{12}^2}} }}{{\sqrt {{{13}^2}} + \sqrt 4 }} = \frac{{23 + 12}}{{13 + 2}} = \frac{{35}}{{15}} = \frac{{35:5}}{{15:5}} = \frac{7}{3}\).
Vậy chọn đáp án D.
Câu 12:
Khẳng định nào sau đây đúng?
Đáp án đúng là: C
Ta có:
Số 9 có hai căn bậc hai là \(\sqrt 9 = 3\) và \( - \sqrt 9 = - 3\). Do đó, đáp án A và D sai.
Số −9 là số âm nên không có căn bậc hai. Do đó, đáp án B sai, đáp án C đúng.
Vậy chọn đáp án C.
Câu 13:
Chọn câu trả lời đúng, nếu \(\sqrt {64} \) = 4x thì x2 bằng?
Đáp án đúng là: B
Ta có:
\(\sqrt {64} \)= 4x
4x = 8
x = 2
Suy ra x2 = 22 = 4
Vậy chọn đáp án B.