Số hữu tỉ là số được viết dưới dạng phân số \[\frac{a}{b}\] với:
A. a = 0; b ≠ 0;
B. a, b \[ \in \mathbb{Z}\], b ≠ 0;
C. a, b \[ \in \mathbb{N}\];
D. a, b \[ \in \mathbb{N}\], b ≠ 0.
Đáp án đúng là: B
Số hữu tỉ là số được viết dưới dạng phân số \[\frac{a}{b}\]với a, b \[ \in \mathbb{Z}\], b ≠ 0.
Cho a, b \[ \in \mathbb{Z}\], b ≠ 0, x = \[\frac{a}{b}\]. Nếu a, b khác dấu thì:
Số đối của các số hữu tỉ sau: 0,5; −2; 9; \[\frac{{ - 7}}{9}\] lần lượt là:
Trong các trường hợp sau trường hợp nào có các số cùng biểu thị một số hữu tỉ \[\frac{{ - \,2}}{3}\]?
Sắp xếp các số hữu tỉ \[\frac{{ - 1}}{4};\,\,\frac{{ - 3}}{2};\,\,\frac{4}{5};\,\,0\] theo thứ tự tăng dần?
Số hữu tỉ \[\frac{x}{6}\] không thỏa mãn điều kiện sau \[\frac{{ - 1}}{2} < \frac{x}{6} < \frac{1}{2}\] là:
</>
Trong các trường hợp sau, trường hợp nào có các số cùng biểu thị một số hữu tỉ \[ - \frac{1}{2}\]?