Tìm giá trị nhỏ nhất của biểu thức \[{\left[ {{{\left( {x + \frac{1}{2}} \right)}^2} + \frac{5}{4}} \right]^2}\].
Ta có \[{\left( {x + \frac{1}{2}} \right)^2} \ge 0\,\,\forall x \Rightarrow {\left( {x + \frac{1}{2}} \right)^2} + \frac{5}{4} \ge \frac{5}{4}\,\,\forall x\]
\[A = {\left[ {{{\left( {x + \frac{1}{2}} \right)}^2} + \frac{5}{4}} \right]^2} \ge {\left( {\frac{5}{4}} \right)^2} = \frac{{25}}{{16}}\,\,\forall x\]
Dấu “=” xảy ra khi và chỉ khi \[x = - \frac{1}{2}\].
Vậy giá trị nhỏ nhất của biểu thức A là \[\frac{{25}}{{16}}\] khi \[x = - \frac{1}{2}\].
Cho hàm số \(f(x) = \frac{2}{3}x - 1\). Trong các điểm sau, điểm nào thuộc đồ thị hàm số trên.
Điểm bài kiểm tra môn Toán học kỳ I của 32 học sinh lớp 7A được ghi trong bảng sau:
7 |
4 |
4 |
6 |
6 |
4 |
6 |
8 |
8 |
7 |
2 |
6 |
4 |
8 |
5 |
6 |
9 |
8 |
4 |
7 |
9 |
5 |
5 |
5 |
7 |
2 |
7 |
6 |
7 |
8 |
6 |
10 |
a) Dấu hiệu ở đây là gì?
b) Lập bảng “tần số” và nhận xét.
c) Tính số trung bình cộng và tìm mốt của dấu hiệu.
d) Vẽ biểu đồ đoạn thẳng.
Cho ΔABC cân tại A kẻ AH\[ \bot \]BC (H\[ \in \]BC).
a) Chứng minh: HB = HC.
b) Kẻ HD\[ \bot \]AB (D\[ \in \]AB), HE\[ \bot \]AC (E\[ \in \]AC). Chứng minh ΔHDE cân.
c) Cho \(\widehat {BAC} = {120^o}\) thì ΔHDE trở thành tam giác gì? Vì sao?
Xác định tính đúng/sai của các khẳng định sau bằn cách đánh dấu “x” vào ô trống thích hợp trong bảng sau:
STT |
Câu |
Đúng |
Sai |
1 |
Tam giác có ba cạnh 12cm; 16cm; 20cm là tam giác vuông. |
|
|
2 |
Tam giác đều là tam giác cân có một góc bằng 60o. |
|
|
3 |
Trong tam giác, góc đối diện với cạnh lớn nhất là góc tù. |
|
|
4 |
Trong tam giác cân, góc ở đáy luôn nhỏ hơn 90o. |
|
|
Điểm bài kiểm tra môn Toán học kỳ I của 32 học sinh lớp 7A được ghi trong bảng sau:
7 |
4 |
4 |
6 |
6 |
4 |
6 |
8 |
8 |
7 |
2 |
6 |
4 |
8 |
5 |
6 |
9 |
8 |
4 |
7 |
9 |
5 |
5 |
5 |
7 |
2 |
7 |
6 |
7 |
8 |
6 |
10 |
a) Dấu hiệu ở đây là gì?
b) Lập bảng “tần số” và nhận xét.
c) Tính số trung bình cộng và tìm mốt của dấu hiệu.
d) Vẽ biểu đồ đoạn thẳng.