Cho \[\widehat {mOn}\] và \[\widehat {nOp}\] là hai góc kề bù. Biết \[\widehat {mOn} = 110^\circ \] và Ot là tia phân giác của góc nOp. Số đo góc mOt là:
A. 145°;
B. 135°;
C. 45°;
D. 35°.
Đáp án đúng là: A
Vì \[\widehat {mOn}\] và \[\widehat {nOp}\] là hai góc kề bù nên \[\widehat {mOn} + \widehat {nOp} = 180^\circ \]
Suy ra \[\widehat {nOp} = 180^\circ - \widehat {mOn}\]
Hay \[\widehat {nOp} = 180^\circ - 110^\circ = 70^\circ \]
Mà \[\widehat {nOt} = \widehat {tOp} = \frac{{\widehat {nOp}}}{2}\] (vì Ot là tia phân giác góc nOp)
Suy ra \[\widehat {nOt} = \widehat {tOp} = \frac{{\widehat {nOp}}}{2} = \frac{{70^\circ }}{2} = 35^\circ \]
Vì hai góc mOn và nOp là hai góc kề bù nên tia On nằm giữa hai tia Om và Op; tia Ot là phân giác của góc nOp nên tia Ot nằm giữa hai tia On và Op.
Do đó tia Ot nằm giữa hai tia On nằm giữa hai tia Om và Ot
Suy ra \[\widehat {mOt} = \widehat {mOn} + \widehat {nOt}\] suy ra \[\widehat {mOt} = 110^\circ + 35^\circ = 145^\circ \]
Vậy \[\widehat {mOt} = 145^\circ \].
Viết giả thiết cho định lí sau:
“Nếu hai đường thẳng phân biệt cùng song song với một đường thẳng khác thì hai đường thẳng đó song song với nhau”.
Cho hình vẽ. Tính góc FEC, biết EF // BC và \[\widehat {ECB} = 40^\circ \]:
Nếu đường thẳng z cắt hai đường thẳng x, y và trong các góc tạo thành có một cặp góc so le trong bằng nhau thì:
Cho hình bình hành ABCD như hình vẽ. Biết EF // DC, \[\widehat {DAB} = 65^\circ \] và \[\widehat {AFE} = 35^\circ \]. Số đo góc KAD là:
Định lí: “Nếu hai đường thẳng song song cùng cắt đường thẳng thứ ba thì hai góc đồng vị bằng nhau”. Giả thiết của định lí là:
Cho định lí: “Hai tia phân giác của hai góc kề bù tạo thành một góc vuông”. Giả thiết, kết luận của định lí là:
Cho \(\widehat {xOy} = 120^\circ \), tia Ot là tia phân giác của góc xOy. Tính số đo góc xOt