Cho hình vẽ dưới đây, biết a // b. Tính x, y.
A.
x = 80° và y = 80°;
B. x = 60° và y = 80°;
C. x = 80° và y = 60°;
D. x = 60° và y = 60°.
Đáp án đúng là: B
Vì a // b nên \[\widehat {BAC} + \widehat {ACD} = 180^\circ \] (hai góc trong cùng phía bù nhau)
Suy ra 100o + x = 180o
Do đó x = 180o ‒ 100° = 80°
Vì a // b nên \[\widehat {ABD} + \widehat {CDB} = 180^\circ \] (hai góc trong cùng phía bù nhau)
Suy ra \[\widehat {CDB} = 180^\circ - \widehat {ABD}\]
\[\widehat {CDB} = 180^\circ - 120^\circ = 60^\circ \]
Mà góc y và \(\widehat {CDB}\) là hai góc đổi đỉnh nên \[y = \widehat {CDB} = 60^\circ \]
Vậy x = 80° và y = 60°.
Cho hình vẽ. Tính góc FEC, biết EF // BC và \[\widehat {ECB} = 40^\circ \]:
Viết giả thiết cho định lí sau:
“Nếu hai đường thẳng phân biệt cùng song song với một đường thẳng khác thì hai đường thẳng đó song song với nhau”.
Nếu đường thẳng z cắt hai đường thẳng x, y và trong các góc tạo thành có một cặp góc so le trong bằng nhau thì:
Cho \(\widehat {xOy} = 120^\circ \), tia Ot là tia phân giác của góc xOy. Tính số đo góc xOt
Cho hình bình hành ABCD như hình vẽ. Biết EF // DC, \[\widehat {DAB} = 65^\circ \] và \[\widehat {AFE} = 35^\circ \]. Số đo góc KAD là:
Cho \[\widehat {mOn}\] và \[\widehat {nOp}\] là hai góc kề bù. Biết \[\widehat {mOn} = 110^\circ \] và Ot là tia phân giác của góc nOp. Số đo góc mOt là:
Định lí: “Nếu hai đường thẳng song song cùng cắt đường thẳng thứ ba thì hai góc đồng vị bằng nhau”. Giả thiết của định lí là:
Cho định lí: “Hai tia phân giác của hai góc kề bù tạo thành một góc vuông”. Giả thiết, kết luận của định lí là: