Cặp số nguyên (x; y) nào sau đây thỏa mãn: x. (y – 1) = -7?
A. (1; -8);
B. (-1; 8);
C. (8; -1);
D. (-8; 1).
Đáp án đúng là: B
Vì \[x,y \in \mathbb{Z}\] nên \[x,y - 1 \in \mathbb{Z}\] và x. (y -1) = -7.
Vậy \[x,y - 1 \in \]Ư (-7). Ta có: Ư (-7) = {-7; -1; 1; 7}.
Ta có bảng sau:
x |
-7 |
-1 |
1 |
7 |
y – 1 |
1 |
7 |
-7 |
-1 |
y |
2 |
8 |
-6 |
0 |
Vậy (x; y) \[ \in \] {(-7; 2); (-1; 8); (1; -6); (7; 0)}.
Có bao nhiêu cặp số nguyên (x; y) thỏa mãn: (x – 4). (2y – 1) = -12?
Có bao nhiêu cặp số nguyên (x; y) thỏa mãn: (-x + 3). (y – 2) = 2?
Điền vào chỗ trống.
Các cặp số nguyên (x; y) thỏa mãn: xy – 5x + y – 5 = -9 là:
(-10; 6); (-4; 8); (-2; 14); (0; -4); ………; ……….
Điền từ thích hợp vào ô trống.
Nếu x, y, a là các số nguyên và x. y = a thì x, y là ………... của a.
Tìm cặp số nguyên (x; y) thỏa mãn: (x + 8). (y + 4) = 2?
Một học sinh đã làm như sau:
- Bước 1: Vì \[x,y \in \mathbb{Z}\] nên \[x + 8,y + 4 \in \mathbb{Z}\] và (x + 8). (y + 4) = 2.
Vậy \[x + 8,y + 4 \in \]Ư (2).
- Bước 2: Ta có: Ư (2) = {1; 2}.
- Bước 3:
Ta có bảng sau:
x + 8 |
1 |
2 |
x |
-7 |
-6 |
y + 4 |
2 |
1 |
y |
-2 |
-3 |
- Bước 4: Vậy (x; y) \[ \in \] {(-7; -2); (-6; -30)}.
Bài làm trên đúng hay sai?