Chia 90 thành ba phần tỉ lệ nghịch với 3; 4; 6. Khi đó phần lớn nhất là số nào trong các số sau?
A. 20
B. 40
C. 10
D. 45
Đáp án đúng là: B
Gọi x, y, z (phần) theo thứ tự là số phần được chia tỉ lệ nghịch lần lượt với 3; 4; 6 (x, y, z Î ℕ*; 0 < x, y, z < 90).
Theo đề bài, ta có: x + y + z = 90 và 3x = 4y = 6z.
Vì 3x = 4y = 6z nên hay .
Áp dụng tính chất dãy tỉ số bằng nhau, ta được:
Suy ra: x = 4 . 10 = 40; y = 3 . 10 = 30; z = 2 . 10 = 20.
Do đó: x = 40; y = 30; z = 20 (thỏa mãn).
Vậy phần lớn nhất là 40.
Cho biết x và y là hai đại lượng tỉ lệ nghịch. Điền số thích hợp vào ô trống trong bảng sau:
x |
0,5 |
−1,2 |
|
|
4 |
6 |
y |
|
|
3 |
−2 |
1,5 |
|
Cho biết x tỉ lệ nghịch với y theo hệ số tỉ lệ 10. Cho bảng giá trị sau:
x |
5 |
x2 |
2 |
y |
y1 |
3 |
y3 |
Khi đó giá trị của y1; x2; y3 lần lượt là bao nhiêu?
Cho biết hai đại lượng x và y tỉ lệ nghịch với nhau và khi x1 = 8 thì y1 = 2. Khi y2 = 4 thì giá trị tương ứng của x2 là:
Cho biết x và y là hai đại lượng tỉ lệ nghịch. Tìm các giá trị y2; y3; y4?
x |
2 |
−1 |
1 |
2 |
y |
3 |
y2 |
y3 |
y4 |