Cho DABC = DMNP. D, E, Q, R lần lượt là trung điểm của BC, CA, NP, PM. Khẳng định nào sau đây là sai?
A. ABD = MNQ;
Đáp án đúng là: D
+) Vì ABC = MNP (giả thiết)
Nên ta có:
• AC = MP, BC = NP, AB = MN (các cặp cạnh tương ứng)
• (các cặp góc tương ứng)
Mà , ,,
(E, D, R, Q lần lượt là trung điểm của CA, CB, MP, NP)
Suy ra AE = EC = MR = RP, BD = DC = NQ = QP
+) Xét ABD và MNQ có:
AB = MN (chứng minh trên),
(chứng minh trên),
BD = NQ (chứng minh trên)
Do đó ABD = MNQ (c.g.c)
Vậy A là đúng.
+) Xét CDE và PQR có:
CD = PQ (chứng minh trên),
(chứng minh trên),
CE = PR (chứng minh trên)
Do đó CDE = PQR (c.g.c)
Vậy B là đúng.
+) Xét ADC và MQP có:
AC = PM (chứng minh trên),
(chứng minh trên),
CD = PQ (chứng minh trên)
Do đó ADC = MQP(c.g.c).
Vậy C là đúng, D là sai.
Ta chọn phương án D.
Cho tam giác MNP và tam giác DEF có: MN = DE, Điều kiện để DEF = NMP theo trường hợp cạnh – góc – cạnh là:
Qua trung điểm H của đoạn thẳng BC, kẻ đường thẳng vuông góc với BC, trên đường thẳng vuông góc đó lấy hai điểm A và I. Nối CA, AB, IB, IC. Phát biểu nào sau đây là đúng nhất:
Cho góc xOy tù , gọi Oz là tia phân giác của góc xOy. Trên tia Ox lấy điểm M, trên tia Oy lấy điểm N sao cho OM = ON. Trên tia đối của tia Oz lấy điểm I tuỳ ý. Chọn phát biểu đúng nhất:
Cho hình vẽ dưới đây:
Biết AB = AC, BM = NC, . Xét các khẳng định sau:
(1) ABM = ACN;
(2) ABN = ACM.
Chọn câu đúng:
Cho hình vuông ABCD, trên cạnh AD lấy điểm E, trên cạnh DC lấy điểm F và trên cạnh BC lấy điểm G sao cho AE = DF = CG. Số đo góc GFE là:
Cho hình vẽ dưới đây:
Số cặp tam giác bằng nhau theo trường hợp cạnh – góc – cạnh là:
Cho tam giác HIK và tam giác DEG có IH = DE, HK = EG. Phát biểu nào sau đây là đúng:
Cho tam giác ABC có AB = AC = BC, phân giác BH và CK cắt nhau tại I. Cho các phát biểu sau:
(I) CK AB;
(II) BH CK ;
(III) BH AC;
(IV)
Số phát biểu đúng là:
Cho hình vẽ sau:
Điều kiện để ABO = NMO theo trường hợp cạnh – góc – cạnh là: