Cho hình vẽ dưới đây:
Số cặp tam giác bằng nhau theo trường hợp cạnh – góc – cạnh là:
A. 1
B. 2
C. 3
D. 4
Đáp án đúng là: C
+ Xét MHI và MKI có:
HI = KI, MI là cạnh chung
Do đó MHI = MKI (c.g.c)
+ Xét HIN và KIN có:
HI = KI, IN là cạnh chung
Do đó HIN = KIN (c.g.c)
Suy ra (hai góc tương ứng) và HN = KN (hai cạnh tương ứng)
+ Xét MHN và MKN có:
HN = KN (chứng minh trên);
(do )
MN là cạnh chung
Do đó MHN = MKN (c.g.c)
Vậy có 3 cặp tam giác bằng nhau theo trường hợp cạnh – góc – cạnh.
Cho tam giác MNP và tam giác DEF có: MN = DE, Điều kiện để DEF = NMP theo trường hợp cạnh – góc – cạnh là:
Qua trung điểm H của đoạn thẳng BC, kẻ đường thẳng vuông góc với BC, trên đường thẳng vuông góc đó lấy hai điểm A và I. Nối CA, AB, IB, IC. Phát biểu nào sau đây là đúng nhất:
Cho góc xOy tù , gọi Oz là tia phân giác của góc xOy. Trên tia Ox lấy điểm M, trên tia Oy lấy điểm N sao cho OM = ON. Trên tia đối của tia Oz lấy điểm I tuỳ ý. Chọn phát biểu đúng nhất:
Cho hình vuông ABCD, trên cạnh AD lấy điểm E, trên cạnh DC lấy điểm F và trên cạnh BC lấy điểm G sao cho AE = DF = CG. Số đo góc GFE là:
Cho hình vẽ dưới đây:
Biết AB = AC, BM = NC, . Xét các khẳng định sau:
(1) ABM = ACN;
(2) ABN = ACM.
Chọn câu đúng:
Cho tam giác HIK và tam giác DEG có IH = DE, HK = EG. Phát biểu nào sau đây là đúng:
Cho tam giác ABC có AB = AC = BC, phân giác BH và CK cắt nhau tại I. Cho các phát biểu sau:
(I) CK AB;
(II) BH CK ;
(III) BH AC;
(IV)
Số phát biểu đúng là:
Cho DABC = DMNP. D, E, Q, R lần lượt là trung điểm của BC, CA, NP, PM. Khẳng định nào sau đây là sai?
Cho hình vẽ sau:
Điều kiện để ABO = NMO theo trường hợp cạnh – góc – cạnh là: