Một túi đựng 10 tấm thẻ được đánh số từ 1 đến 10. Rút ngẫu nhiên ba tấm thẻ từ túi đó. Xác suất để tổng số ghi trên ba thẻ rút được là một số chia hết cho 3 bằng
A.
B.
C.
D.
Đáp án B
Từ các chữ số 1; 2; 3; 4; 5; 6; 7; 8 ta lập các số tự nhiên có 6 chữ số, đôi một khác nhau. Chọn ngẫu nhiên một số vừa lập, xác suất để chọn được một số có đúng 3 chữ số lẻ mà các chữ số lẻ xếp kề nhau bằng
Gọi S là tập hợp tất cả các số tự nhiên có 4 chữ số được lập từ tập hợp X = {1;2;3;4;5;6;7;8;9}. Chọn ngẫu nhiên một số từ S. Xác suất để số chọn được chia hết cho 6 bằng.
Gieo ngẫu nhiên 2 con súc sắc cân đối đồng chất. Xác suất của biến cố: “Hiệu số chấm xuất hiện trên 2 con súc sắc bằng 1” là
Cho hình vuông ABCD. Trên các cạnh AB, BC, CD, DA lần lượt cho 1, 2, 3 và n điểm phân biệt khác A, B, C, D. Lấy ngẫu nhiên 3 điểm từ n+6 điểm đã cho. Biết xác suất lấy được một tam giác là .Tìm n.
Một hộp chứa 6 viên bi đỏ và 4 viên bi xanh. Lấy lần lượt 2 viên bi từ hộp đó. Xác suất để viên bi được lấy lần thứ 2 là bi xanh bằng
Cho hai đường thẳng song song a và b. Trên đường thẳng a lấy 6 điểm phân biệt; trên đường thẳng b lấy 5 điểm phân biệt. Chọn ngẫu nhiên 3 điểm trong các điểm đã cho trên hai đường thẳng a và b. Tính xác suất để 3 điểm được chọn tạo thành một tam giác.
Một lớp có 20 nam sinh và 15 nữ sinh. Giáo viên chọn ngẫu nhiên 4 học sinh lên bảng giải bài tập. Xác suất để 4 học sinh được chọn có cả nam và nữ bằng
Một đội gồm 5 nam và 8 nữ. Lập một nhóm gồm 4 người hát tốp ca. Xác suất để trong bốn người được chọn có ít nhất ba nữ bằng
Một bình đựng 8 viên bi xanh và 4 viên bi đỏ. Lấy ngẫu nhiên 3 viên bi. Xác suất để có được ít nhất hai viên bi xanh là bao nhiêu?
Xét các số tự nhiên gồm 5 chữ số khác nhau được lập từ các số 1; 3; 5; 7; 9. Tính xác suất để tìm được một số không bắt đầu bởi 135.
Cho một đa giác đều có 18 đỉnh nội tiếp trong một đường tròn tâm O. Gọi X là tập các tam giác có các đỉnh là đỉnh của đa giác trên. Xác suất để chọn được một tam giác từ tập X là tam giác cân nhưng không phải là tam giác đều bằng
Một lô hàng gồm 30 sản phẩm tốt và 10 sản phẩm xấu. Lấy ngẫu nhiên 3 sản phẩm. Xác suất để 3 sản phẩm lấy ra có ít nhất một sản phẩm tốt bằng
Cho A là tập các số tự nhiên có 7 chữ số. Lấy một số bất kỳ của tập A. Xác suất để lấy được số lẻ và chia hết cho 9 bằng
Đề thi kiểm tra 15 phút có 10 câu trắc nghiệm mỗi câu có bốn phương án trả lời, trong đó có một phương án đúng, trả lời đúng mỗi câu được 1,0 điểm. Một thí sinh làm cả 10 câu, mỗi câu chọn một phương án. Tính xác suất để thí sinh đó đạt từ 8,0 điểm trở lên.