Tìm các chữ số \({\rm{a}}\) và \({\rm{b}}\) sao cho \({\rm{n}} = \overline {{\rm{a53b}}} \) vừa là bội của 5, vừa là bội của 6
Ta có \[{\rm{n}} \vdots 6\] nên \[{\rm{n}} \vdots 2\]
Số \({\rm{n}} = \overline {{\rm{a53b}}} \) chia hết cho cả 2 và 5 nên \[{\rm{b = 0}}\]\( \Rightarrow \) \({\rm{n}} = \overline {{\rm{a530}}} \)
Ta có \[{\rm{n}} \vdots 6\] nên \[{\rm{n}} \vdots 3 \Rightarrow \left( {{\rm{a }} + {\rm{ }}5{\rm{ }} + {\rm{ }}3{\rm{ }} + {\rm{ }}0} \right) \vdots 3\] hay\[\left( {{\rm{a }} + {\rm{ }}8} \right) \vdots 3\], do đó \[{\rm{a}} \in \left\{ {{\rm{ 1; 4; 7}}} \right\}\]
Vậy \[{\rm{n}} \in \left\{ {{\rm{ 1530; 4530; 7530}}} \right\}\]cả 3 số này vừa là bội của 5, vừa là bội của 6