Tìm các số tự nhiên x sao cho (x +20) là bội của (x + 2)
\[{\rm{x + 20}}\] là bội của \[{\rm{x + 2}} \Rightarrow \left( {{\rm{x + 20}}} \right) \vdots \left( {{\rm{x + 2}}} \right)\]
\[ \Rightarrow {\rm{x + 20 = }}\left[ {\left( {{\rm{x + 2}}} \right){\rm{ + 18}}} \right] \vdots \left( {{\rm{x + 2}}} \right)\] mà \[\left( {{\rm{x + 2}}} \right) \vdots \left( {{\rm{x + 2}}} \right)\]
Do đó \[18 \vdots \left( {{\rm{x + 2}}} \right) \Rightarrow {\rm{x + 2}} \in {\rm{\"O }}\left( {{\rm{18}}} \right){\rm{ }}\]
\[{\rm{\"O }}\left( {{\rm{18}}} \right){\rm{ = }}\left\{ {{\rm{ \pm 1; \pm 2; \pm 3; \pm 6; \pm 9; \pm 18}}} \right\}\]
Mà \[{\rm{x + 2 }} \ge {\rm{ 2\;}}\]\[{\rm{(x}} \in Z)\] nên \[{\rm{x + 2}} \in \left\{ {{\rm{ 2; 3; 6; 9; 18}}} \right\}\]
\[ \Rightarrow {\rm{x}} \in \left\{ {{\rm{0; 1; 4; 7; 16}}} \right\}\]
Cho hai tập hợp số \[{\rm{A = }}\left\{ {{\rm{4\;;\;5\;;\;6\;;\;7\;;\;8}}} \right\}{\rm{;\;B = }}\left\{ {{\rm{13\;;\;14\;;\;15}}} \right\}\]
Có thể lập được bao nhiêu tổng dạng \[\left( {{\rm{a + b}}} \right)\] với\[{\rm{a}} \in {\rm{A, b}} \in {\rm{B}}\]?
Tìm các số tự nhiên \[{\rm{x}}\]sao cho \[10 \vdots \left( {{\rm{ x - 1}}} \right)\]
Cho hai tập hợp số: \[{\rm{A = }}\left\{ {{\rm{2 ; 3 ; 4 ; 5 ; 6}}} \right\}{\rm{, B = }}\left\{ {{\rm{21 ; 22 ; 23}}} \right\}{\rm{.}}\]
Có thể lập được bao nhiêu tổng dạng \[\left( {{\rm{a + b}}} \right)\] với \[{\rm{a\;}} \in {\rm{A, b\;}} \in {\rm{B}}\]?
Cho hai tập hợp số: A = {2; 3; 4; 5; 6}, B = {21; 22; 23}