Cho a và b là hai số nguyên khác 0. Biết \(a \vdots b\) và \(b \vdots a\) . Khi đó
Trả lời:
Ta có
\[\begin{array}{l}a \vdots b \Rightarrow a = b.{q_1}({q_1} \in Z)\\b \vdots a \Rightarrow b = a.{q_2}({q_2} \in Z)\end{array}\]
Suy ra \[a = b.{q_1} = \left( {a.{q_2}} \right).{q_1} = a.\left( {{q_1}{q_2}} \right)\]
Vì \[a \ne 0\] nên \[a = a\left( {{q_1}{q_2}} \right) \Rightarrow 1 = {q_1}{q_2}\]
Mà \[{q_1},{q_2} \in Z\] nên \[{q_1} = {q_2} = 1\] hoặc \[{q_1} = {q_2} = - 1\]
Do đó \(a = b\) hoặc \(a = - b\)
Đáp án cần chọn là: D
Gọi A là tập hợp các giá trị \[n \in Z\] để \[({n^2} - 7)\;\] là bội của \[(n + 3)\] .Tổng các phần tử của A bằng:
Giá trị biểu thức \[M = \left( { - 192873} \right).\left( { - 2345} \right).{\left( { - 4} \right)^5}.0\;\] là
Tìm \[x \in Z\;\] biết \[(x + 1) + (x + 2) + ... + (x + 99) + (x + 100) = 0\]
Tìm \(n \in {\rm Z}\) biết \[\left( {n + 5} \right) \vdots \left( {n + 1} \right)\]
Cho \[x;y \in \mathbb{Z}\] . Nếu \[5x + 46y\;\] chia hết cho 16 thì \[x + 6y\;\] chia hết cho
Có bao nhiêu số nguyên n thỏa mãn \[(n - 1)\;\] là bội của \[(n + 5)\;\] và \[(n + 5)\;\] là bội của \[(n - 1)?\;\]