Số các số nguyên x để \[\frac{{5x}}{3}:\frac{{10{x^2} + 5x}}{{21}}\]có giá trị là số nguyên là:
Trả lời:
\[\frac{{5x}}{3}:\frac{{10{x^2} + 5x}}{{21}} = \frac{{5x}}{3}.\frac{{21}}{{10{x^2} + 5x}}\]
\[ = \frac{{5x.21}}{{3.5x.\left( {2x + 1} \right)}} = \frac{7}{{2x + 1}}\]
Để biểu thức đã cho có giá trị là số nguyên thì \[\frac{7}{{2x + 1}}\] nguyên.
Do đó \[2x + 1 \in U\left( 7 \right) = \left\{ { \pm 1; \pm 7} \right\}\]
Ta có bảng:
Vậy \[x \in \left\{ {0; - 1;3; - 4} \right\}\] suy ra có 4 giá trị thỏa mãn.
Đáp án cần chọn là: B
Có bao nhiêu giá trị nguyên dương của x thỏa mãn \[{\left( {\frac{{ - 5}}{3}} \right)^3} < x < \frac{{ - 24}}{{35}}.\frac{{ - 5}}{6}\]?
Cho \[M = \frac{{17}}{5}.\frac{{ - 31}}{{125}}.\frac{1}{2}.\frac{{10}}{{17}}.{\left( {\frac{{ - 1}}{2}} \right)^3}\] và \[N = \left( {\frac{{17}}{{28}} + \frac{{28}}{{29}} - \frac{{19}}{{30}} - \frac{{20}}{{31}}} \right).\left( {\frac{{ - 5}}{{12}} + \frac{1}{4} + \frac{1}{6}} \right)\]. Khi đó, tổng M + N bằng
Một hình chữ nhật có diện tích \[\frac{{48}}{{35}}{m^2}\] và có chiều dài là \[\frac{6}{5}\]m. Tính chiều rộng của hình chữ nhật đó.
Giá trị nào dưới đây của x thỏa mãn \[x:\frac{5}{8} = \frac{{ - 14}}{{35}}.\frac{{15}}{{ - 42}}\]
Để làm bánh caramen, Linh cần \[\frac{4}{5}\] cốc đường để làm được 10 cái bánh. Vậy muốn làm 1515 cái bánh thì Linh cần bao nhiêu cốc đường?
Điền số thích hợp vào ô trống:
Một ô tô chạy hết \[\frac{3}{4}\] giờ trên một đoạn đường với vận tốc trung bình 40km/h.
Người lái xe muốn thời gian chạy hết đoạn đường đó chỉ \[\frac{1}{2}\] giờ thì ô tô phải chạy với vận tốc trung bình là: km/h
Có bao nhiêu giá trị của x thỏa mãn \[\left( {\frac{7}{6} + x} \right):\frac{{16}}{{25}} = \frac{{ - 5}}{4}\]:
Tính \[M = 1 + \frac{1}{2} + \frac{1}{{{2^2}}} + \frac{1}{{{2^3}}} + ... + \frac{1}{{{2^{99}}}} + \frac{1}{{{2^{100}}}}\]
Một người đi xe máy, đi đoạn đường AB với vận tốc 40km/h hết \[\frac{5}{4}\] giờ. Lúc về, người đó đi với vận tốc 45km/h. Tính thời gian người đó đi từ B về A?
Tính giá trị biểu thức sau theo cách hợp lí
\[\left( {\frac{{20}}{7}.\frac{{ - 4}}{{ - 5}}} \right) + \left( {\frac{{20}}{7}.\frac{3}{{ - 5}}} \right)\]