Cho góc nhọn \(\widehat {xOy}\), trên tia Ox lấy điểm A, trên tia Oy lấy điểm B sao cho OA = OB. Đường trung trực của OA và đường trung trực của OB cắt nhau tại I.
Cho các khẳng định sau:
(I) OI là tia phân giác của \(\widehat {xOy}\);
(II) OI là đường trung trực của đoạn AB.
Chọn khẳng định đúng:
Hướng dẫn giải
Đáp án đúng là: C
Vì HI là trung trực của OA nên IH ⊥ OA, OH = HA = \(\frac{1}{2}\)OA;
Vì KI là trung trực của OB nên IK ⊥ OB, OK = KB = \(\frac{1}{2}\)OB.
Mà OA = OB (giả thiết) nên OH = OK.
Xét DOIH và DOIK có
\(\widehat {OHI} = \widehat {OKI}( = 90^\circ )\),
OI là cạnh chung,
OH = OK (chứng minh trên)
Do đó DOIH = DOIK (cạnh huyển – cạnh góc vuông).
Suy ra \(\widehat {HOI} = \widehat {KOI}\) (hai góc tương ứng).
Do đó OI là tia phân giác của \(\widehat {xOy}\), nên (I) đúng.
Xét DOAB có IH là trung trực của OA, IK là trung trực của OB, IH cắt IK tại H nên I là giao điểm của ba đường trung trực trong tam giác OAB.
Do đó OI là trung trực của AB, nên (II) đúng.
Vậy ta chọn phương án C.
Cho tam giác ABC nhọn, đường cao AH. Lấy điểm D sao cho AB là trung trực của HD. Lấy điểm E sao cho AC là trung trực của HE. Gọi M là giao điểm của DE và AB, gọi N là giao điểm của DE và AC. Khẳng định nào sau đây là đúng?
Cho tam giác ABC có M là trung điểm của BC. Các đường trung trực của AB và AC cắt nhau tại O. Số đo góc OMC là:
Cho tam giác ABC có AB < AC. Trên AC lấy điểm D sao cho AB = CD. O là giao điểm của các đường trung trực của BD và AC. Phát biểu nào sau đây là đúng?
Cho tam giác ABC có AB < AC. Trên AC lấy điểm D sao cho AB = CD. O là giao điểm của các đường trung trực của BD và AC. Phát biểu nào sau đây là đúng?
Cho tam giác ABC có góc A là góc tù. Gọi M, N lần lượt là trung điểm của AB và AC. Vẽ đường trung trực của các cạnh AB, AC cắt BC lần lượt tại D và E. Biết BD = 3 cm, DE = 2 cm, EC = 4 cm. Chu vi tam giác ADE bằng:
Cho góc xOy có số đo là 50º, điểm A nằm trong góc xOy. Vẽ điểm M sao cho Ox là trung trực của AM, vẽ điểm N sao cho Oy là trung trực của AN. Số đo góc MON là: