Thứ bảy, 21/12/2024
IMG-LOGO

Câu hỏi:

15/07/2024 178

Cho ∆ABC cân tại A. Tia phân giác của góc B và góc C cắt cạnh AC, AB lần lượt ở D và E. Đoạn thẳng có độ dài bằng đoạn thẳng BE là


A. AE;



B. DC;


C. ED;

D. ED và DC.

Đáp án chính xác

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: D

Cho tam giác ABC cân tại A. Tia phân giác của góc B và góc C cắt cạnh AC, AB lần lượt ở D và E. (ảnh 1)

Ta có ∆ABC cân tại A (giả thiết) suy ra ABC^=ACB^ (tính chất)

BD là tia phân giác góc B nên EBD^=DBC^=12ABC^

CE là tia phân giác góc C nên DCE^=ECB^=12ACB^

Do đó EBD^=DBC^=DCE^=ECB^

Xét ∆BEC và ∆CDB có:

ABC^=ACB^

BC là cạnh chung

ECB^=DBC^ (chứng minh trên)

Suy ra ∆BEC = ∆CDB (g.c.g)

Do đó BE = CD (hai cạnh tương ứng)

Mà BE + EA = AB; CD + DA = AC

AB = AC (tam giác ABC cân tại A)

Suy ra EA = DA ∆AED cân tại A AED^=ADE^ (tính chất)

AED^+ADE^+BAC^=180° (tổng ba góc của một tam giác)

Suy ra AED^=180°BAC^2 (1)

ABC^=ACB^ ABC^+ACB^+BAC^=180° (tổng ba góc của một tam giác)

Suy ra ABC^=180°BAC^2 (1)

Từ (1) và (2) suy ra AED^=ABC^ mà hai góc đồng vị nên ED // BC.

Suy ra EDB^=DBC^ (hai góc so le trong)

EBD^=DBC^ (chứng ninh trên)

Suy ra EDB^=EBD^

Do đó tam giác EBD cân tại E (dấu hiệu nhận biết)

Suy ra EB = ED

Vậy BE = CD = ED.

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho ∆ABC cân tại A. Tia phân giác BAC^ cắt BC tại M. Đường thẳng qua M và vuông góc với AB cắt AB tại H. Đường thẳng qua M và vuông góc với AC cắt AC tại K.

Nhận định nào dưới đây sai?

Xem đáp án » 05/01/2023 168

Câu 2:

Cho ∆ABC đều. lấy các điểm D, E, F lần lượt trên các cạnh AB, BC, CA sao cho AD = BE = CF.

Nhận định nào dưới đây đúng?

Xem đáp án » 05/01/2023 93

Câu hỏi mới nhất

Xem thêm »
Xem thêm »