Cho tam giác ABC và tam giác DEF có AB = DE, AC = DF, . Biết . Số đo góc E là
A. 90°;
B. 30°;
C. 60°;
Hướng dẫn giải
Đáp án đúng là: C
Xét ∆ABC và ∆DEF có:
AB = DE
AC = DF
Do đó, ∆ABC = ∆DEF (c.g.c)
Suy ra: (hai góc tương ứng)
Mà .
Cho tam giác MNP có và . Trong các khẳng định dưới đây, khẳng định bào đúng?
Cho ∆ABC có diện tích là 180 cm2 và cạnh BC = 20 cm. Độ dài đường cao ứng với cạnh BC là
Cho tam giác MNP có MN = MP và góc P có số đo là 60°. Khẳng định nào dưới đây sai?
Cho ∆ABC có AC > AB. Trên cạnh AC lấy điểm E sao cho CE = AB. Gọi O là một điểm sao cho OA = OC và OB = OE (hình vẽ). So sánh góc OAB và góc OCA đúng là
Cho tam giác ABC có AB < AC. Tia phân giác của góc A cắt BC ở K. Từ B kẻ đường thẳng vuông góc với AK tại H và cắt AC ở D. Chọn câu sai.
Cho tam giác ABC có AD là khoảng cách từ A đến BC và BE là khoảng cách từ E đến AC. So sánh nào dưới đây đúng?
Cho tam giác KIL có góc I là 62°. Đường phân giác góc K và góc L cắt nhau tại O. Số đo góc KIO là